x uchun yechish
x=2007-2\sqrt{502}\approx 1962,189286995
x=2\sqrt{502}+2007\approx 2051,810713005
Grafik
Baham ko'rish
Klipbordga nusxa olish
4028048-4014x+x^{2}=2007
2008-x ga 2006-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
4028048-4014x+x^{2}-2007=0
Ikkala tarafdan 2007 ni ayirish.
4026041-4014x+x^{2}=0
4026041 olish uchun 4028048 dan 2007 ni ayirish.
x^{2}-4014x+4026041=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4014\right)±\sqrt{\left(-4014\right)^{2}-4\times 4026041}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -4014 ni b va 4026041 ni c bilan almashtiring.
x=\frac{-\left(-4014\right)±\sqrt{16112196-4\times 4026041}}{2}
-4014 kvadratini chiqarish.
x=\frac{-\left(-4014\right)±\sqrt{16112196-16104164}}{2}
-4 ni 4026041 marotabaga ko'paytirish.
x=\frac{-\left(-4014\right)±\sqrt{8032}}{2}
16112196 ni -16104164 ga qo'shish.
x=\frac{-\left(-4014\right)±4\sqrt{502}}{2}
8032 ning kvadrat ildizini chiqarish.
x=\frac{4014±4\sqrt{502}}{2}
-4014 ning teskarisi 4014 ga teng.
x=\frac{4\sqrt{502}+4014}{2}
x=\frac{4014±4\sqrt{502}}{2} tenglamasini yeching, bunda ± musbat. 4014 ni 4\sqrt{502} ga qo'shish.
x=2\sqrt{502}+2007
4014+4\sqrt{502} ni 2 ga bo'lish.
x=\frac{4014-4\sqrt{502}}{2}
x=\frac{4014±4\sqrt{502}}{2} tenglamasini yeching, bunda ± manfiy. 4014 dan 4\sqrt{502} ni ayirish.
x=2007-2\sqrt{502}
4014-4\sqrt{502} ni 2 ga bo'lish.
x=2\sqrt{502}+2007 x=2007-2\sqrt{502}
Tenglama yechildi.
4028048-4014x+x^{2}=2007
2008-x ga 2006-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-4014x+x^{2}=2007-4028048
Ikkala tarafdan 4028048 ni ayirish.
-4014x+x^{2}=-4026041
-4026041 olish uchun 2007 dan 4028048 ni ayirish.
x^{2}-4014x=-4026041
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-4014x+\left(-2007\right)^{2}=-4026041+\left(-2007\right)^{2}
-4014 ni bo‘lish, x shartining koeffitsienti, 2 ga -2007 olish uchun. Keyin, -2007 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4014x+4028049=-4026041+4028049
-2007 kvadratini chiqarish.
x^{2}-4014x+4028049=2008
-4026041 ni 4028049 ga qo'shish.
\left(x-2007\right)^{2}=2008
x^{2}-4014x+4028049 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2007\right)^{2}}=\sqrt{2008}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2007=2\sqrt{502} x-2007=-2\sqrt{502}
Qisqartirish.
x=2\sqrt{502}+2007 x=2007-2\sqrt{502}
2007 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}