x uchun yechish
x=10\sqrt{113}+130\approx 236,301458127
x=130-10\sqrt{113}\approx 23,698541873
Grafik
Baham ko'rish
Klipbordga nusxa olish
60000-1300x+5x^{2}=32000
200-x ga 300-5x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
60000-1300x+5x^{2}-32000=0
Ikkala tarafdan 32000 ni ayirish.
28000-1300x+5x^{2}=0
28000 olish uchun 60000 dan 32000 ni ayirish.
5x^{2}-1300x+28000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-1300\right)±\sqrt{\left(-1300\right)^{2}-4\times 5\times 28000}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, -1300 ni b va 28000 ni c bilan almashtiring.
x=\frac{-\left(-1300\right)±\sqrt{1690000-4\times 5\times 28000}}{2\times 5}
-1300 kvadratini chiqarish.
x=\frac{-\left(-1300\right)±\sqrt{1690000-20\times 28000}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-1300\right)±\sqrt{1690000-560000}}{2\times 5}
-20 ni 28000 marotabaga ko'paytirish.
x=\frac{-\left(-1300\right)±\sqrt{1130000}}{2\times 5}
1690000 ni -560000 ga qo'shish.
x=\frac{-\left(-1300\right)±100\sqrt{113}}{2\times 5}
1130000 ning kvadrat ildizini chiqarish.
x=\frac{1300±100\sqrt{113}}{2\times 5}
-1300 ning teskarisi 1300 ga teng.
x=\frac{1300±100\sqrt{113}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{100\sqrt{113}+1300}{10}
x=\frac{1300±100\sqrt{113}}{10} tenglamasini yeching, bunda ± musbat. 1300 ni 100\sqrt{113} ga qo'shish.
x=10\sqrt{113}+130
1300+100\sqrt{113} ni 10 ga bo'lish.
x=\frac{1300-100\sqrt{113}}{10}
x=\frac{1300±100\sqrt{113}}{10} tenglamasini yeching, bunda ± manfiy. 1300 dan 100\sqrt{113} ni ayirish.
x=130-10\sqrt{113}
1300-100\sqrt{113} ni 10 ga bo'lish.
x=10\sqrt{113}+130 x=130-10\sqrt{113}
Tenglama yechildi.
60000-1300x+5x^{2}=32000
200-x ga 300-5x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-1300x+5x^{2}=32000-60000
Ikkala tarafdan 60000 ni ayirish.
-1300x+5x^{2}=-28000
-28000 olish uchun 32000 dan 60000 ni ayirish.
5x^{2}-1300x=-28000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{5x^{2}-1300x}{5}=-\frac{28000}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\left(-\frac{1300}{5}\right)x=-\frac{28000}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}-260x=-\frac{28000}{5}
-1300 ni 5 ga bo'lish.
x^{2}-260x=-5600
-28000 ni 5 ga bo'lish.
x^{2}-260x+\left(-130\right)^{2}=-5600+\left(-130\right)^{2}
-260 ni bo‘lish, x shartining koeffitsienti, 2 ga -130 olish uchun. Keyin, -130 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-260x+16900=-5600+16900
-130 kvadratini chiqarish.
x^{2}-260x+16900=11300
-5600 ni 16900 ga qo'shish.
\left(x-130\right)^{2}=11300
x^{2}-260x+16900 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-130\right)^{2}}=\sqrt{11300}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-130=10\sqrt{113} x-130=-10\sqrt{113}
Qisqartirish.
x=10\sqrt{113}+130 x=130-10\sqrt{113}
130 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}