(200-20(x-10)(x-8)=640
x uchun yechish (complex solution)
x=9+\sqrt{21}i\approx 9+4,582575695i
x=-\sqrt{21}i+9\approx 9-4,582575695i
Grafik
Baham ko'rish
Klipbordga nusxa olish
200-20\left(x-10\right)\left(x-8\right)-640=0
Ikkala tarafdan 640 ni ayirish.
200+\left(-20x+200\right)\left(x-8\right)-640=0
-20 ga x-10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
200-20x^{2}+360x-1600-640=0
-20x+200 ga x-8 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-1400-20x^{2}+360x-640=0
-1400 olish uchun 200 dan 1600 ni ayirish.
-2040-20x^{2}+360x=0
-2040 olish uchun -1400 dan 640 ni ayirish.
-20x^{2}+360x-2040=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-360±\sqrt{360^{2}-4\left(-20\right)\left(-2040\right)}}{2\left(-20\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -20 ni a, 360 ni b va -2040 ni c bilan almashtiring.
x=\frac{-360±\sqrt{129600-4\left(-20\right)\left(-2040\right)}}{2\left(-20\right)}
360 kvadratini chiqarish.
x=\frac{-360±\sqrt{129600+80\left(-2040\right)}}{2\left(-20\right)}
-4 ni -20 marotabaga ko'paytirish.
x=\frac{-360±\sqrt{129600-163200}}{2\left(-20\right)}
80 ni -2040 marotabaga ko'paytirish.
x=\frac{-360±\sqrt{-33600}}{2\left(-20\right)}
129600 ni -163200 ga qo'shish.
x=\frac{-360±40\sqrt{21}i}{2\left(-20\right)}
-33600 ning kvadrat ildizini chiqarish.
x=\frac{-360±40\sqrt{21}i}{-40}
2 ni -20 marotabaga ko'paytirish.
x=\frac{-360+40\sqrt{21}i}{-40}
x=\frac{-360±40\sqrt{21}i}{-40} tenglamasini yeching, bunda ± musbat. -360 ni 40i\sqrt{21} ga qo'shish.
x=-\sqrt{21}i+9
-360+40i\sqrt{21} ni -40 ga bo'lish.
x=\frac{-40\sqrt{21}i-360}{-40}
x=\frac{-360±40\sqrt{21}i}{-40} tenglamasini yeching, bunda ± manfiy. -360 dan 40i\sqrt{21} ni ayirish.
x=9+\sqrt{21}i
-360-40i\sqrt{21} ni -40 ga bo'lish.
x=-\sqrt{21}i+9 x=9+\sqrt{21}i
Tenglama yechildi.
200-20\left(x-10\right)\left(x-8\right)=640
-20 hosil qilish uchun -1 va 20 ni ko'paytirish.
200+\left(-20x+200\right)\left(x-8\right)=640
-20 ga x-10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
200-20x^{2}+360x-1600=640
-20x+200 ga x-8 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-1400-20x^{2}+360x=640
-1400 olish uchun 200 dan 1600 ni ayirish.
-20x^{2}+360x=640+1400
1400 ni ikki tarafga qo’shing.
-20x^{2}+360x=2040
2040 olish uchun 640 va 1400'ni qo'shing.
\frac{-20x^{2}+360x}{-20}=\frac{2040}{-20}
Ikki tarafini -20 ga bo‘ling.
x^{2}+\frac{360}{-20}x=\frac{2040}{-20}
-20 ga bo'lish -20 ga ko'paytirishni bekor qiladi.
x^{2}-18x=\frac{2040}{-20}
360 ni -20 ga bo'lish.
x^{2}-18x=-102
2040 ni -20 ga bo'lish.
x^{2}-18x+\left(-9\right)^{2}=-102+\left(-9\right)^{2}
-18 ni bo‘lish, x shartining koeffitsienti, 2 ga -9 olish uchun. Keyin, -9 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-18x+81=-102+81
-9 kvadratini chiqarish.
x^{2}-18x+81=-21
-102 ni 81 ga qo'shish.
\left(x-9\right)^{2}=-21
x^{2}-18x+81 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-9\right)^{2}}=\sqrt{-21}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-9=\sqrt{21}i x-9=-\sqrt{21}i
Qisqartirish.
x=9+\sqrt{21}i x=-\sqrt{21}i+9
9 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}