x uchun yechish
x = \frac{\sqrt{177} + 15}{2} \approx 14,152067348
x=\frac{15-\sqrt{177}}{2}\approx 0,847932652
Grafik
Baham ko'rish
Klipbordga nusxa olish
2000+300x-20x^{2}=2240
20-x ga 100+20x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2000+300x-20x^{2}-2240=0
Ikkala tarafdan 2240 ni ayirish.
-240+300x-20x^{2}=0
-240 olish uchun 2000 dan 2240 ni ayirish.
-20x^{2}+300x-240=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-300±\sqrt{300^{2}-4\left(-20\right)\left(-240\right)}}{2\left(-20\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -20 ni a, 300 ni b va -240 ni c bilan almashtiring.
x=\frac{-300±\sqrt{90000-4\left(-20\right)\left(-240\right)}}{2\left(-20\right)}
300 kvadratini chiqarish.
x=\frac{-300±\sqrt{90000+80\left(-240\right)}}{2\left(-20\right)}
-4 ni -20 marotabaga ko'paytirish.
x=\frac{-300±\sqrt{90000-19200}}{2\left(-20\right)}
80 ni -240 marotabaga ko'paytirish.
x=\frac{-300±\sqrt{70800}}{2\left(-20\right)}
90000 ni -19200 ga qo'shish.
x=\frac{-300±20\sqrt{177}}{2\left(-20\right)}
70800 ning kvadrat ildizini chiqarish.
x=\frac{-300±20\sqrt{177}}{-40}
2 ni -20 marotabaga ko'paytirish.
x=\frac{20\sqrt{177}-300}{-40}
x=\frac{-300±20\sqrt{177}}{-40} tenglamasini yeching, bunda ± musbat. -300 ni 20\sqrt{177} ga qo'shish.
x=\frac{15-\sqrt{177}}{2}
-300+20\sqrt{177} ni -40 ga bo'lish.
x=\frac{-20\sqrt{177}-300}{-40}
x=\frac{-300±20\sqrt{177}}{-40} tenglamasini yeching, bunda ± manfiy. -300 dan 20\sqrt{177} ni ayirish.
x=\frac{\sqrt{177}+15}{2}
-300-20\sqrt{177} ni -40 ga bo'lish.
x=\frac{15-\sqrt{177}}{2} x=\frac{\sqrt{177}+15}{2}
Tenglama yechildi.
2000+300x-20x^{2}=2240
20-x ga 100+20x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
300x-20x^{2}=2240-2000
Ikkala tarafdan 2000 ni ayirish.
300x-20x^{2}=240
240 olish uchun 2240 dan 2000 ni ayirish.
-20x^{2}+300x=240
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-20x^{2}+300x}{-20}=\frac{240}{-20}
Ikki tarafini -20 ga bo‘ling.
x^{2}+\frac{300}{-20}x=\frac{240}{-20}
-20 ga bo'lish -20 ga ko'paytirishni bekor qiladi.
x^{2}-15x=\frac{240}{-20}
300 ni -20 ga bo'lish.
x^{2}-15x=-12
240 ni -20 ga bo'lish.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=-12+\left(-\frac{15}{2}\right)^{2}
-15 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{15}{2} olish uchun. Keyin, -\frac{15}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-15x+\frac{225}{4}=-12+\frac{225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{15}{2} kvadratini chiqarish.
x^{2}-15x+\frac{225}{4}=\frac{177}{4}
-12 ni \frac{225}{4} ga qo'shish.
\left(x-\frac{15}{2}\right)^{2}=\frac{177}{4}
x^{2}-15x+\frac{225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{177}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{15}{2}=\frac{\sqrt{177}}{2} x-\frac{15}{2}=-\frac{\sqrt{177}}{2}
Qisqartirish.
x=\frac{\sqrt{177}+15}{2} x=\frac{15-\sqrt{177}}{2}
\frac{15}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}