Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

120-50x+5x^{2}=125\times 9
20-5x ga 6-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
120-50x+5x^{2}=1125
1125 hosil qilish uchun 125 va 9 ni ko'paytirish.
120-50x+5x^{2}-1125=0
Ikkala tarafdan 1125 ni ayirish.
-1005-50x+5x^{2}=0
-1005 olish uchun 120 dan 1125 ni ayirish.
5x^{2}-50x-1005=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 5\left(-1005\right)}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, -50 ni b va -1005 ni c bilan almashtiring.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 5\left(-1005\right)}}{2\times 5}
-50 kvadratini chiqarish.
x=\frac{-\left(-50\right)±\sqrt{2500-20\left(-1005\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-50\right)±\sqrt{2500+20100}}{2\times 5}
-20 ni -1005 marotabaga ko'paytirish.
x=\frac{-\left(-50\right)±\sqrt{22600}}{2\times 5}
2500 ni 20100 ga qo'shish.
x=\frac{-\left(-50\right)±10\sqrt{226}}{2\times 5}
22600 ning kvadrat ildizini chiqarish.
x=\frac{50±10\sqrt{226}}{2\times 5}
-50 ning teskarisi 50 ga teng.
x=\frac{50±10\sqrt{226}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{10\sqrt{226}+50}{10}
x=\frac{50±10\sqrt{226}}{10} tenglamasini yeching, bunda ± musbat. 50 ni 10\sqrt{226} ga qo'shish.
x=\sqrt{226}+5
50+10\sqrt{226} ni 10 ga bo'lish.
x=\frac{50-10\sqrt{226}}{10}
x=\frac{50±10\sqrt{226}}{10} tenglamasini yeching, bunda ± manfiy. 50 dan 10\sqrt{226} ni ayirish.
x=5-\sqrt{226}
50-10\sqrt{226} ni 10 ga bo'lish.
x=\sqrt{226}+5 x=5-\sqrt{226}
Tenglama yechildi.
120-50x+5x^{2}=125\times 9
20-5x ga 6-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
120-50x+5x^{2}=1125
1125 hosil qilish uchun 125 va 9 ni ko'paytirish.
-50x+5x^{2}=1125-120
Ikkala tarafdan 120 ni ayirish.
-50x+5x^{2}=1005
1005 olish uchun 1125 dan 120 ni ayirish.
5x^{2}-50x=1005
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{5x^{2}-50x}{5}=\frac{1005}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\left(-\frac{50}{5}\right)x=\frac{1005}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}-10x=\frac{1005}{5}
-50 ni 5 ga bo'lish.
x^{2}-10x=201
1005 ni 5 ga bo'lish.
x^{2}-10x+\left(-5\right)^{2}=201+\left(-5\right)^{2}
-10 ni bo‘lish, x shartining koeffitsienti, 2 ga -5 olish uchun. Keyin, -5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-10x+25=201+25
-5 kvadratini chiqarish.
x^{2}-10x+25=226
201 ni 25 ga qo'shish.
\left(x-5\right)^{2}=226
x^{2}-10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-5\right)^{2}}=\sqrt{226}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-5=\sqrt{226} x-5=-\sqrt{226}
Qisqartirish.
x=\sqrt{226}+5 x=5-\sqrt{226}
5 ni tenglamaning ikkala tarafiga qo'shish.