x uchun yechish
x=3
x=7
Grafik
Baham ko'rish
Klipbordga nusxa olish
20x-2x^{2}=42
20-2x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
20x-2x^{2}-42=0
Ikkala tarafdan 42 ni ayirish.
-2x^{2}+20x-42=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-20±\sqrt{20^{2}-4\left(-2\right)\left(-42\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 20 ni b va -42 ni c bilan almashtiring.
x=\frac{-20±\sqrt{400-4\left(-2\right)\left(-42\right)}}{2\left(-2\right)}
20 kvadratini chiqarish.
x=\frac{-20±\sqrt{400+8\left(-42\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{400-336}}{2\left(-2\right)}
8 ni -42 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{64}}{2\left(-2\right)}
400 ni -336 ga qo'shish.
x=\frac{-20±8}{2\left(-2\right)}
64 ning kvadrat ildizini chiqarish.
x=\frac{-20±8}{-4}
2 ni -2 marotabaga ko'paytirish.
x=-\frac{12}{-4}
x=\frac{-20±8}{-4} tenglamasini yeching, bunda ± musbat. -20 ni 8 ga qo'shish.
x=3
-12 ni -4 ga bo'lish.
x=-\frac{28}{-4}
x=\frac{-20±8}{-4} tenglamasini yeching, bunda ± manfiy. -20 dan 8 ni ayirish.
x=7
-28 ni -4 ga bo'lish.
x=3 x=7
Tenglama yechildi.
20x-2x^{2}=42
20-2x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2x^{2}+20x=42
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}+20x}{-2}=\frac{42}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{20}{-2}x=\frac{42}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-10x=\frac{42}{-2}
20 ni -2 ga bo'lish.
x^{2}-10x=-21
42 ni -2 ga bo'lish.
x^{2}-10x+\left(-5\right)^{2}=-21+\left(-5\right)^{2}
-10 ni bo‘lish, x shartining koeffitsienti, 2 ga -5 olish uchun. Keyin, -5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-10x+25=-21+25
-5 kvadratini chiqarish.
x^{2}-10x+25=4
-21 ni 25 ga qo'shish.
\left(x-5\right)^{2}=4
x^{2}-10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-5\right)^{2}}=\sqrt{4}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-5=2 x-5=-2
Qisqartirish.
x=7 x=3
5 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}