x uchun yechish
x=15
x=1
Grafik
Baham ko'rish
Klipbordga nusxa olish
240-64x+4x^{2}=180
20-2x ga 12-2x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
240-64x+4x^{2}-180=0
Ikkala tarafdan 180 ni ayirish.
60-64x+4x^{2}=0
60 olish uchun 240 dan 180 ni ayirish.
4x^{2}-64x+60=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 4\times 60}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -64 ni b va 60 ni c bilan almashtiring.
x=\frac{-\left(-64\right)±\sqrt{4096-4\times 4\times 60}}{2\times 4}
-64 kvadratini chiqarish.
x=\frac{-\left(-64\right)±\sqrt{4096-16\times 60}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-64\right)±\sqrt{4096-960}}{2\times 4}
-16 ni 60 marotabaga ko'paytirish.
x=\frac{-\left(-64\right)±\sqrt{3136}}{2\times 4}
4096 ni -960 ga qo'shish.
x=\frac{-\left(-64\right)±56}{2\times 4}
3136 ning kvadrat ildizini chiqarish.
x=\frac{64±56}{2\times 4}
-64 ning teskarisi 64 ga teng.
x=\frac{64±56}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{120}{8}
x=\frac{64±56}{8} tenglamasini yeching, bunda ± musbat. 64 ni 56 ga qo'shish.
x=15
120 ni 8 ga bo'lish.
x=\frac{8}{8}
x=\frac{64±56}{8} tenglamasini yeching, bunda ± manfiy. 64 dan 56 ni ayirish.
x=1
8 ni 8 ga bo'lish.
x=15 x=1
Tenglama yechildi.
240-64x+4x^{2}=180
20-2x ga 12-2x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-64x+4x^{2}=180-240
Ikkala tarafdan 240 ni ayirish.
-64x+4x^{2}=-60
-60 olish uchun 180 dan 240 ni ayirish.
4x^{2}-64x=-60
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{4x^{2}-64x}{4}=-\frac{60}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\left(-\frac{64}{4}\right)x=-\frac{60}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-16x=-\frac{60}{4}
-64 ni 4 ga bo'lish.
x^{2}-16x=-15
-60 ni 4 ga bo'lish.
x^{2}-16x+\left(-8\right)^{2}=-15+\left(-8\right)^{2}
-16 ni bo‘lish, x shartining koeffitsienti, 2 ga -8 olish uchun. Keyin, -8 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-16x+64=-15+64
-8 kvadratini chiqarish.
x^{2}-16x+64=49
-15 ni 64 ga qo'shish.
\left(x-8\right)^{2}=49
x^{2}-16x+64 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-8\right)^{2}}=\sqrt{49}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-8=7 x-8=-7
Qisqartirish.
x=15 x=1
8 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}