x uchun yechish
x=460
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(960-2x+160\right)\left(x-360\right)=20000
2 ga 480-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(1120-2x\right)\left(x-360\right)=20000
1120 olish uchun 960 va 160'ni qo'shing.
1120x-403200-2x^{2}+720x=20000
1120-2x ifodaning har bir elementini x-360 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
1840x-403200-2x^{2}=20000
1840x ni olish uchun 1120x va 720x ni birlashtirish.
1840x-403200-2x^{2}-20000=0
Ikkala tarafdan 20000 ni ayirish.
1840x-423200-2x^{2}=0
-423200 olish uchun -403200 dan 20000 ni ayirish.
-2x^{2}+1840x-423200=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1840±\sqrt{1840^{2}-4\left(-2\right)\left(-423200\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 1840 ni b va -423200 ni c bilan almashtiring.
x=\frac{-1840±\sqrt{3385600-4\left(-2\right)\left(-423200\right)}}{2\left(-2\right)}
1840 kvadratini chiqarish.
x=\frac{-1840±\sqrt{3385600+8\left(-423200\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-1840±\sqrt{3385600-3385600}}{2\left(-2\right)}
8 ni -423200 marotabaga ko'paytirish.
x=\frac{-1840±\sqrt{0}}{2\left(-2\right)}
3385600 ni -3385600 ga qo'shish.
x=-\frac{1840}{2\left(-2\right)}
0 ning kvadrat ildizini chiqarish.
x=-\frac{1840}{-4}
2 ni -2 marotabaga ko'paytirish.
x=460
-1840 ni -4 ga bo'lish.
\left(960-2x+160\right)\left(x-360\right)=20000
2 ga 480-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(1120-2x\right)\left(x-360\right)=20000
1120 olish uchun 960 va 160'ni qo'shing.
1120x-403200-2x^{2}+720x=20000
1120-2x ifodaning har bir elementini x-360 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
1840x-403200-2x^{2}=20000
1840x ni olish uchun 1120x va 720x ni birlashtirish.
1840x-2x^{2}=20000+403200
403200 ni ikki tarafga qo’shing.
1840x-2x^{2}=423200
423200 olish uchun 20000 va 403200'ni qo'shing.
-2x^{2}+1840x=423200
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}+1840x}{-2}=\frac{423200}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{1840}{-2}x=\frac{423200}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-920x=\frac{423200}{-2}
1840 ni -2 ga bo'lish.
x^{2}-920x=-211600
423200 ni -2 ga bo'lish.
x^{2}-920x+\left(-460\right)^{2}=-211600+\left(-460\right)^{2}
-920 ni bo‘lish, x shartining koeffitsienti, 2 ga -460 olish uchun. Keyin, -460 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-920x+211600=-211600+211600
-460 kvadratini chiqarish.
x^{2}-920x+211600=0
-211600 ni 211600 ga qo'shish.
\left(x-460\right)^{2}=0
x^{2}-920x+211600 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-460\right)^{2}}=\sqrt{0}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-460=0 x-460=0
Qisqartirish.
x=460 x=460
460 ni tenglamaning ikkala tarafiga qo'shish.
x=460
Tenglama yechildi. Yechimlar bir xil.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}