x uchun yechish (complex solution)
x=-\frac{1}{2}=-0,5
x=1
x=-\left(\sqrt{5}+1\right)\approx -3,236067977
x=\sqrt{5}-1\approx 1,236067977
x uchun yechish
x=\sqrt{5}-1\approx 1,236067977
x=-\sqrt{5}-1\approx -3,236067977
x=1
x=-\frac{1}{2}=-0,5
Grafik
Baham ko'rish
Klipbordga nusxa olish
±2,±4,±1,±\frac{1}{2}
Ratsional ildiz teoremasiga koʻra, koʻphadlarning barcha ratsional ildizlari \frac{p}{q} shakli ichida, bu yerda p konstant shart 4 bilan boʻlinadi va q yetakchi koeffisientni 2 boʻladi. Barcha nomzodlarni oching \frac{p}{q}.
x=1
Eng kichigidan boshlab, mutlaq qiymatgacha butun son qiymatlarni sinab koʻrish orqali ana shunday bitta ildizni toping. Agar butun sonlar ildizlari topilmasa, kasrlarni sinab koʻring.
2x^{3}+5x^{2}-6x-4=0
Faktor teoremasiga koʻra, x-k har bir k ildizining faktoridir. 2x^{3}+5x^{2}-6x-4 ni olish uchun 2x^{4}+3x^{3}-11x^{2}+2x+4 ni x-1 ga bo‘ling. Natija 0 ga teng boʻlgandagi tenglamani yeching.
±2,±4,±1,±\frac{1}{2}
Ratsional ildiz teoremasiga koʻra, koʻphadlarning barcha ratsional ildizlari \frac{p}{q} shakli ichida, bu yerda p konstant shart -4 bilan boʻlinadi va q yetakchi koeffisientni 2 boʻladi. Barcha nomzodlarni oching \frac{p}{q}.
x=-\frac{1}{2}
Eng kichigidan boshlab, mutlaq qiymatgacha butun son qiymatlarni sinab koʻrish orqali ana shunday bitta ildizni toping. Agar butun sonlar ildizlari topilmasa, kasrlarni sinab koʻring.
x^{2}+2x-4=0
Faktor teoremasiga koʻra, x-k har bir k ildizining faktoridir. x^{2}+2x-4 ni olish uchun 2x^{3}+5x^{2}-6x-4 ni 2\left(x+\frac{1}{2}\right)=2x+1 ga bo‘ling. Natija 0 ga teng boʻlgandagi tenglamani yeching.
x=\frac{-2±\sqrt{2^{2}-4\times 1\left(-4\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 1 ni, b uchun 2 ni va c uchun -4 ni ayiring.
x=\frac{-2±2\sqrt{5}}{2}
Hisoblarni amalga oshiring.
x=-\sqrt{5}-1 x=\sqrt{5}-1
x^{2}+2x-4=0 tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=1 x=-\frac{1}{2} x=-\sqrt{5}-1 x=\sqrt{5}-1
Barcha topilgan yechimlar roʻyxati.
±2,±4,±1,±\frac{1}{2}
Ratsional ildiz teoremasiga koʻra, koʻphadlarning barcha ratsional ildizlari \frac{p}{q} shakli ichida, bu yerda p konstant shart 4 bilan boʻlinadi va q yetakchi koeffisientni 2 boʻladi. Barcha nomzodlarni oching \frac{p}{q}.
x=1
Eng kichigidan boshlab, mutlaq qiymatgacha butun son qiymatlarni sinab koʻrish orqali ana shunday bitta ildizni toping. Agar butun sonlar ildizlari topilmasa, kasrlarni sinab koʻring.
2x^{3}+5x^{2}-6x-4=0
Faktor teoremasiga koʻra, x-k har bir k ildizining faktoridir. 2x^{3}+5x^{2}-6x-4 ni olish uchun 2x^{4}+3x^{3}-11x^{2}+2x+4 ni x-1 ga bo‘ling. Natija 0 ga teng boʻlgandagi tenglamani yeching.
±2,±4,±1,±\frac{1}{2}
Ratsional ildiz teoremasiga koʻra, koʻphadlarning barcha ratsional ildizlari \frac{p}{q} shakli ichida, bu yerda p konstant shart -4 bilan boʻlinadi va q yetakchi koeffisientni 2 boʻladi. Barcha nomzodlarni oching \frac{p}{q}.
x=-\frac{1}{2}
Eng kichigidan boshlab, mutlaq qiymatgacha butun son qiymatlarni sinab koʻrish orqali ana shunday bitta ildizni toping. Agar butun sonlar ildizlari topilmasa, kasrlarni sinab koʻring.
x^{2}+2x-4=0
Faktor teoremasiga koʻra, x-k har bir k ildizining faktoridir. x^{2}+2x-4 ni olish uchun 2x^{3}+5x^{2}-6x-4 ni 2\left(x+\frac{1}{2}\right)=2x+1 ga bo‘ling. Natija 0 ga teng boʻlgandagi tenglamani yeching.
x=\frac{-2±\sqrt{2^{2}-4\times 1\left(-4\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 1 ni, b uchun 2 ni va c uchun -4 ni ayiring.
x=\frac{-2±2\sqrt{5}}{2}
Hisoblarni amalga oshiring.
x=-\sqrt{5}-1 x=\sqrt{5}-1
x^{2}+2x-4=0 tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=1 x=-\frac{1}{2} x=-\sqrt{5}-1 x=\sqrt{5}-1
Barcha topilgan yechimlar roʻyxati.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}