Baholash
2\left(\sqrt{6}+1\right)\approx 6,898979486
Omil
2 {(\sqrt{6} + 1)} = 6,898979486
Baham ko'rish
Klipbordga nusxa olish
\left(2\sqrt{3}+6\sqrt{2}\right)\times \frac{\sqrt{1}}{\sqrt{3}}
\sqrt{\frac{1}{3}} boʻlinmasining kvadrat ildizini \frac{\sqrt{1}}{\sqrt{3}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
\left(2\sqrt{3}+6\sqrt{2}\right)\times \frac{1}{\sqrt{3}}
1 ning kvadrat ildizini hisoblab, 1 natijaga ega bo‘ling.
\left(2\sqrt{3}+6\sqrt{2}\right)\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
\frac{1}{\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\left(2\sqrt{3}+6\sqrt{2}\right)\times \frac{\sqrt{3}}{3}
\sqrt{3} kvadrati – 3.
\frac{\left(2\sqrt{3}+6\sqrt{2}\right)\sqrt{3}}{3}
\left(2\sqrt{3}+6\sqrt{2}\right)\times \frac{\sqrt{3}}{3} ni yagona kasrga aylantiring.
\frac{2\left(\sqrt{3}\right)^{2}+6\sqrt{2}\sqrt{3}}{3}
2\sqrt{3}+6\sqrt{2} ga \sqrt{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{2\times 3+6\sqrt{2}\sqrt{3}}{3}
\sqrt{3} kvadrati – 3.
\frac{6+6\sqrt{2}\sqrt{3}}{3}
6 hosil qilish uchun 2 va 3 ni ko'paytirish.
\frac{6+6\sqrt{6}}{3}
\sqrt{2} va \sqrt{3} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}