Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

240-8x-x^{2}=1750
12-x ga 20+x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
240-8x-x^{2}-1750=0
Ikkala tarafdan 1750 ni ayirish.
-1510-8x-x^{2}=0
-1510 olish uchun 240 dan 1750 ni ayirish.
-x^{2}-8x-1510=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1\right)\left(-1510\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -8 ni b va -1510 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1\right)\left(-1510\right)}}{2\left(-1\right)}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64+4\left(-1510\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64-6040}}{2\left(-1\right)}
4 ni -1510 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{-5976}}{2\left(-1\right)}
64 ni -6040 ga qo'shish.
x=\frac{-\left(-8\right)±6\sqrt{166}i}{2\left(-1\right)}
-5976 ning kvadrat ildizini chiqarish.
x=\frac{8±6\sqrt{166}i}{2\left(-1\right)}
-8 ning teskarisi 8 ga teng.
x=\frac{8±6\sqrt{166}i}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{8+6\sqrt{166}i}{-2}
x=\frac{8±6\sqrt{166}i}{-2} tenglamasini yeching, bunda ± musbat. 8 ni 6i\sqrt{166} ga qo'shish.
x=-3\sqrt{166}i-4
8+6i\sqrt{166} ni -2 ga bo'lish.
x=\frac{-6\sqrt{166}i+8}{-2}
x=\frac{8±6\sqrt{166}i}{-2} tenglamasini yeching, bunda ± manfiy. 8 dan 6i\sqrt{166} ni ayirish.
x=-4+3\sqrt{166}i
8-6i\sqrt{166} ni -2 ga bo'lish.
x=-3\sqrt{166}i-4 x=-4+3\sqrt{166}i
Tenglama yechildi.
240-8x-x^{2}=1750
12-x ga 20+x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-8x-x^{2}=1750-240
Ikkala tarafdan 240 ni ayirish.
-8x-x^{2}=1510
1510 olish uchun 1750 dan 240 ni ayirish.
-x^{2}-8x=1510
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}-8x}{-1}=\frac{1510}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{8}{-1}\right)x=\frac{1510}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+8x=\frac{1510}{-1}
-8 ni -1 ga bo'lish.
x^{2}+8x=-1510
1510 ni -1 ga bo'lish.
x^{2}+8x+4^{2}=-1510+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+8x+16=-1510+16
4 kvadratini chiqarish.
x^{2}+8x+16=-1494
-1510 ni 16 ga qo'shish.
\left(x+4\right)^{2}=-1494
x^{2}+8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+4\right)^{2}}=\sqrt{-1494}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+4=3\sqrt{166}i x+4=-3\sqrt{166}i
Qisqartirish.
x=-4+3\sqrt{166}i x=-3\sqrt{166}i-4
Tenglamaning ikkala tarafidan 4 ni ayirish.