x uchun yechish (complex solution)
x=-3\sqrt{166}i-4\approx -4-38,65229618i
x=-4+3\sqrt{166}i\approx -4+38,65229618i
Grafik
Baham ko'rish
Klipbordga nusxa olish
240-8x-x^{2}=1750
12-x ga 20+x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
240-8x-x^{2}-1750=0
Ikkala tarafdan 1750 ni ayirish.
-1510-8x-x^{2}=0
-1510 olish uchun 240 dan 1750 ni ayirish.
-x^{2}-8x-1510=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1\right)\left(-1510\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -8 ni b va -1510 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1\right)\left(-1510\right)}}{2\left(-1\right)}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64+4\left(-1510\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64-6040}}{2\left(-1\right)}
4 ni -1510 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{-5976}}{2\left(-1\right)}
64 ni -6040 ga qo'shish.
x=\frac{-\left(-8\right)±6\sqrt{166}i}{2\left(-1\right)}
-5976 ning kvadrat ildizini chiqarish.
x=\frac{8±6\sqrt{166}i}{2\left(-1\right)}
-8 ning teskarisi 8 ga teng.
x=\frac{8±6\sqrt{166}i}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{8+6\sqrt{166}i}{-2}
x=\frac{8±6\sqrt{166}i}{-2} tenglamasini yeching, bunda ± musbat. 8 ni 6i\sqrt{166} ga qo'shish.
x=-3\sqrt{166}i-4
8+6i\sqrt{166} ni -2 ga bo'lish.
x=\frac{-6\sqrt{166}i+8}{-2}
x=\frac{8±6\sqrt{166}i}{-2} tenglamasini yeching, bunda ± manfiy. 8 dan 6i\sqrt{166} ni ayirish.
x=-4+3\sqrt{166}i
8-6i\sqrt{166} ni -2 ga bo'lish.
x=-3\sqrt{166}i-4 x=-4+3\sqrt{166}i
Tenglama yechildi.
240-8x-x^{2}=1750
12-x ga 20+x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-8x-x^{2}=1750-240
Ikkala tarafdan 240 ni ayirish.
-8x-x^{2}=1510
1510 olish uchun 1750 dan 240 ni ayirish.
-x^{2}-8x=1510
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}-8x}{-1}=\frac{1510}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{8}{-1}\right)x=\frac{1510}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+8x=\frac{1510}{-1}
-8 ni -1 ga bo'lish.
x^{2}+8x=-1510
1510 ni -1 ga bo'lish.
x^{2}+8x+4^{2}=-1510+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+8x+16=-1510+16
4 kvadratini chiqarish.
x^{2}+8x+16=-1494
-1510 ni 16 ga qo'shish.
\left(x+4\right)^{2}=-1494
x^{2}+8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+4\right)^{2}}=\sqrt{-1494}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+4=3\sqrt{166}i x+4=-3\sqrt{166}i
Qisqartirish.
x=-4+3\sqrt{166}i x=-3\sqrt{166}i-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}