x uchun yechish (complex solution)
x=\frac{-\sqrt{471}i+13}{4}\approx 3,25-5,425633604i
x=\frac{13+\sqrt{471}i}{4}\approx 3,25+5,425633604i
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(13-2x\right)x=80
13 olish uchun 12 va 1'ni qo'shing.
13x-2x^{2}=80
13-2x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
13x-2x^{2}-80=0
Ikkala tarafdan 80 ni ayirish.
-2x^{2}+13x-80=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-13±\sqrt{13^{2}-4\left(-2\right)\left(-80\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 13 ni b va -80 ni c bilan almashtiring.
x=\frac{-13±\sqrt{169-4\left(-2\right)\left(-80\right)}}{2\left(-2\right)}
13 kvadratini chiqarish.
x=\frac{-13±\sqrt{169+8\left(-80\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-13±\sqrt{169-640}}{2\left(-2\right)}
8 ni -80 marotabaga ko'paytirish.
x=\frac{-13±\sqrt{-471}}{2\left(-2\right)}
169 ni -640 ga qo'shish.
x=\frac{-13±\sqrt{471}i}{2\left(-2\right)}
-471 ning kvadrat ildizini chiqarish.
x=\frac{-13±\sqrt{471}i}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{-13+\sqrt{471}i}{-4}
x=\frac{-13±\sqrt{471}i}{-4} tenglamasini yeching, bunda ± musbat. -13 ni i\sqrt{471} ga qo'shish.
x=\frac{-\sqrt{471}i+13}{4}
-13+i\sqrt{471} ni -4 ga bo'lish.
x=\frac{-\sqrt{471}i-13}{-4}
x=\frac{-13±\sqrt{471}i}{-4} tenglamasini yeching, bunda ± manfiy. -13 dan i\sqrt{471} ni ayirish.
x=\frac{13+\sqrt{471}i}{4}
-13-i\sqrt{471} ni -4 ga bo'lish.
x=\frac{-\sqrt{471}i+13}{4} x=\frac{13+\sqrt{471}i}{4}
Tenglama yechildi.
\left(13-2x\right)x=80
13 olish uchun 12 va 1'ni qo'shing.
13x-2x^{2}=80
13-2x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2x^{2}+13x=80
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}+13x}{-2}=\frac{80}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{13}{-2}x=\frac{80}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{13}{2}x=\frac{80}{-2}
13 ni -2 ga bo'lish.
x^{2}-\frac{13}{2}x=-40
80 ni -2 ga bo'lish.
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=-40+\left(-\frac{13}{4}\right)^{2}
-\frac{13}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{13}{4} olish uchun. Keyin, -\frac{13}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{13}{2}x+\frac{169}{16}=-40+\frac{169}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{13}{4} kvadratini chiqarish.
x^{2}-\frac{13}{2}x+\frac{169}{16}=-\frac{471}{16}
-40 ni \frac{169}{16} ga qo'shish.
\left(x-\frac{13}{4}\right)^{2}=-\frac{471}{16}
x^{2}-\frac{13}{2}x+\frac{169}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{-\frac{471}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{13}{4}=\frac{\sqrt{471}i}{4} x-\frac{13}{4}=-\frac{\sqrt{471}i}{4}
Qisqartirish.
x=\frac{13+\sqrt{471}i}{4} x=\frac{-\sqrt{471}i+13}{4}
\frac{13}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}