x uchun yechish
x=-6
x=2
Grafik
Baham ko'rish
Klipbordga nusxa olish
121x^{2}+484x+160=1612
11x+4 ga 11x+40 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
121x^{2}+484x+160-1612=0
Ikkala tarafdan 1612 ni ayirish.
121x^{2}+484x-1452=0
-1452 olish uchun 160 dan 1612 ni ayirish.
x=\frac{-484±\sqrt{484^{2}-4\times 121\left(-1452\right)}}{2\times 121}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 121 ni a, 484 ni b va -1452 ni c bilan almashtiring.
x=\frac{-484±\sqrt{234256-4\times 121\left(-1452\right)}}{2\times 121}
484 kvadratini chiqarish.
x=\frac{-484±\sqrt{234256-484\left(-1452\right)}}{2\times 121}
-4 ni 121 marotabaga ko'paytirish.
x=\frac{-484±\sqrt{234256+702768}}{2\times 121}
-484 ni -1452 marotabaga ko'paytirish.
x=\frac{-484±\sqrt{937024}}{2\times 121}
234256 ni 702768 ga qo'shish.
x=\frac{-484±968}{2\times 121}
937024 ning kvadrat ildizini chiqarish.
x=\frac{-484±968}{242}
2 ni 121 marotabaga ko'paytirish.
x=\frac{484}{242}
x=\frac{-484±968}{242} tenglamasini yeching, bunda ± musbat. -484 ni 968 ga qo'shish.
x=2
484 ni 242 ga bo'lish.
x=-\frac{1452}{242}
x=\frac{-484±968}{242} tenglamasini yeching, bunda ± manfiy. -484 dan 968 ni ayirish.
x=-6
-1452 ni 242 ga bo'lish.
x=2 x=-6
Tenglama yechildi.
121x^{2}+484x+160=1612
11x+4 ga 11x+40 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
121x^{2}+484x=1612-160
Ikkala tarafdan 160 ni ayirish.
121x^{2}+484x=1452
1452 olish uchun 1612 dan 160 ni ayirish.
\frac{121x^{2}+484x}{121}=\frac{1452}{121}
Ikki tarafini 121 ga bo‘ling.
x^{2}+\frac{484}{121}x=\frac{1452}{121}
121 ga bo'lish 121 ga ko'paytirishni bekor qiladi.
x^{2}+4x=\frac{1452}{121}
484 ni 121 ga bo'lish.
x^{2}+4x=12
1452 ni 121 ga bo'lish.
x^{2}+4x+2^{2}=12+2^{2}
4 ni bo‘lish, x shartining koeffitsienti, 2 ga 2 olish uchun. Keyin, 2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+4x+4=12+4
2 kvadratini chiqarish.
x^{2}+4x+4=16
12 ni 4 ga qo'shish.
\left(x+2\right)^{2}=16
x^{2}+4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+2\right)^{2}}=\sqrt{16}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+2=4 x+2=-4
Qisqartirish.
x=2 x=-6
Tenglamaning ikkala tarafidan 2 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}