x uchun yechish (complex solution)
x=150+10\sqrt{39}i\approx 150+62,449979984i
x=-10\sqrt{39}i+150\approx 150-62,449979984i
Grafik
Baham ko'rish
Klipbordga nusxa olish
1500x-100000-5x^{2}=32000
1000-5x ga x-100 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
1500x-100000-5x^{2}-32000=0
Ikkala tarafdan 32000 ni ayirish.
1500x-132000-5x^{2}=0
-132000 olish uchun -100000 dan 32000 ni ayirish.
-5x^{2}+1500x-132000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1500±\sqrt{1500^{2}-4\left(-5\right)\left(-132000\right)}}{2\left(-5\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -5 ni a, 1500 ni b va -132000 ni c bilan almashtiring.
x=\frac{-1500±\sqrt{2250000-4\left(-5\right)\left(-132000\right)}}{2\left(-5\right)}
1500 kvadratini chiqarish.
x=\frac{-1500±\sqrt{2250000+20\left(-132000\right)}}{2\left(-5\right)}
-4 ni -5 marotabaga ko'paytirish.
x=\frac{-1500±\sqrt{2250000-2640000}}{2\left(-5\right)}
20 ni -132000 marotabaga ko'paytirish.
x=\frac{-1500±\sqrt{-390000}}{2\left(-5\right)}
2250000 ni -2640000 ga qo'shish.
x=\frac{-1500±100\sqrt{39}i}{2\left(-5\right)}
-390000 ning kvadrat ildizini chiqarish.
x=\frac{-1500±100\sqrt{39}i}{-10}
2 ni -5 marotabaga ko'paytirish.
x=\frac{-1500+100\sqrt{39}i}{-10}
x=\frac{-1500±100\sqrt{39}i}{-10} tenglamasini yeching, bunda ± musbat. -1500 ni 100i\sqrt{39} ga qo'shish.
x=-10\sqrt{39}i+150
-1500+100i\sqrt{39} ni -10 ga bo'lish.
x=\frac{-100\sqrt{39}i-1500}{-10}
x=\frac{-1500±100\sqrt{39}i}{-10} tenglamasini yeching, bunda ± manfiy. -1500 dan 100i\sqrt{39} ni ayirish.
x=150+10\sqrt{39}i
-1500-100i\sqrt{39} ni -10 ga bo'lish.
x=-10\sqrt{39}i+150 x=150+10\sqrt{39}i
Tenglama yechildi.
1500x-100000-5x^{2}=32000
1000-5x ga x-100 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
1500x-5x^{2}=32000+100000
100000 ni ikki tarafga qo’shing.
1500x-5x^{2}=132000
132000 olish uchun 32000 va 100000'ni qo'shing.
-5x^{2}+1500x=132000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-5x^{2}+1500x}{-5}=\frac{132000}{-5}
Ikki tarafini -5 ga bo‘ling.
x^{2}+\frac{1500}{-5}x=\frac{132000}{-5}
-5 ga bo'lish -5 ga ko'paytirishni bekor qiladi.
x^{2}-300x=\frac{132000}{-5}
1500 ni -5 ga bo'lish.
x^{2}-300x=-26400
132000 ni -5 ga bo'lish.
x^{2}-300x+\left(-150\right)^{2}=-26400+\left(-150\right)^{2}
-300 ni bo‘lish, x shartining koeffitsienti, 2 ga -150 olish uchun. Keyin, -150 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-300x+22500=-26400+22500
-150 kvadratini chiqarish.
x^{2}-300x+22500=-3900
-26400 ni 22500 ga qo'shish.
\left(x-150\right)^{2}=-3900
x^{2}-300x+22500 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-150\right)^{2}}=\sqrt{-3900}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-150=10\sqrt{39}i x-150=-10\sqrt{39}i
Qisqartirish.
x=150+10\sqrt{39}i x=-10\sqrt{39}i+150
150 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}