x uchun yechish
x=80\sqrt{2}+180\approx 293,13708499
x=180-80\sqrt{2}\approx 66,86291501
Grafik
Baham ko'rish
Klipbordga nusxa olish
130000-1800x+5x^{2}=32000
100-x ga 1300-5x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
130000-1800x+5x^{2}-32000=0
Ikkala tarafdan 32000 ni ayirish.
98000-1800x+5x^{2}=0
98000 olish uchun 130000 dan 32000 ni ayirish.
5x^{2}-1800x+98000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-1800\right)±\sqrt{\left(-1800\right)^{2}-4\times 5\times 98000}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, -1800 ni b va 98000 ni c bilan almashtiring.
x=\frac{-\left(-1800\right)±\sqrt{3240000-4\times 5\times 98000}}{2\times 5}
-1800 kvadratini chiqarish.
x=\frac{-\left(-1800\right)±\sqrt{3240000-20\times 98000}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-1800\right)±\sqrt{3240000-1960000}}{2\times 5}
-20 ni 98000 marotabaga ko'paytirish.
x=\frac{-\left(-1800\right)±\sqrt{1280000}}{2\times 5}
3240000 ni -1960000 ga qo'shish.
x=\frac{-\left(-1800\right)±800\sqrt{2}}{2\times 5}
1280000 ning kvadrat ildizini chiqarish.
x=\frac{1800±800\sqrt{2}}{2\times 5}
-1800 ning teskarisi 1800 ga teng.
x=\frac{1800±800\sqrt{2}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{800\sqrt{2}+1800}{10}
x=\frac{1800±800\sqrt{2}}{10} tenglamasini yeching, bunda ± musbat. 1800 ni 800\sqrt{2} ga qo'shish.
x=80\sqrt{2}+180
1800+800\sqrt{2} ni 10 ga bo'lish.
x=\frac{1800-800\sqrt{2}}{10}
x=\frac{1800±800\sqrt{2}}{10} tenglamasini yeching, bunda ± manfiy. 1800 dan 800\sqrt{2} ni ayirish.
x=180-80\sqrt{2}
1800-800\sqrt{2} ni 10 ga bo'lish.
x=80\sqrt{2}+180 x=180-80\sqrt{2}
Tenglama yechildi.
130000-1800x+5x^{2}=32000
100-x ga 1300-5x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-1800x+5x^{2}=32000-130000
Ikkala tarafdan 130000 ni ayirish.
-1800x+5x^{2}=-98000
-98000 olish uchun 32000 dan 130000 ni ayirish.
5x^{2}-1800x=-98000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{5x^{2}-1800x}{5}=-\frac{98000}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\left(-\frac{1800}{5}\right)x=-\frac{98000}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}-360x=-\frac{98000}{5}
-1800 ni 5 ga bo'lish.
x^{2}-360x=-19600
-98000 ni 5 ga bo'lish.
x^{2}-360x+\left(-180\right)^{2}=-19600+\left(-180\right)^{2}
-360 ni bo‘lish, x shartining koeffitsienti, 2 ga -180 olish uchun. Keyin, -180 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-360x+32400=-19600+32400
-180 kvadratini chiqarish.
x^{2}-360x+32400=12800
-19600 ni 32400 ga qo'shish.
\left(x-180\right)^{2}=12800
x^{2}-360x+32400 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-180\right)^{2}}=\sqrt{12800}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-180=80\sqrt{2} x-180=-80\sqrt{2}
Qisqartirish.
x=80\sqrt{2}+180 x=180-80\sqrt{2}
180 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}