x uchun yechish
x=30
x=40
Grafik
Baham ko'rish
Klipbordga nusxa olish
3000+70x-x^{2}=4200
100-x ga 30+x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3000+70x-x^{2}-4200=0
Ikkala tarafdan 4200 ni ayirish.
-1200+70x-x^{2}=0
-1200 olish uchun 3000 dan 4200 ni ayirish.
-x^{2}+70x-1200=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-70±\sqrt{70^{2}-4\left(-1\right)\left(-1200\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 70 ni b va -1200 ni c bilan almashtiring.
x=\frac{-70±\sqrt{4900-4\left(-1\right)\left(-1200\right)}}{2\left(-1\right)}
70 kvadratini chiqarish.
x=\frac{-70±\sqrt{4900+4\left(-1200\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-70±\sqrt{4900-4800}}{2\left(-1\right)}
4 ni -1200 marotabaga ko'paytirish.
x=\frac{-70±\sqrt{100}}{2\left(-1\right)}
4900 ni -4800 ga qo'shish.
x=\frac{-70±10}{2\left(-1\right)}
100 ning kvadrat ildizini chiqarish.
x=\frac{-70±10}{-2}
2 ni -1 marotabaga ko'paytirish.
x=-\frac{60}{-2}
x=\frac{-70±10}{-2} tenglamasini yeching, bunda ± musbat. -70 ni 10 ga qo'shish.
x=30
-60 ni -2 ga bo'lish.
x=-\frac{80}{-2}
x=\frac{-70±10}{-2} tenglamasini yeching, bunda ± manfiy. -70 dan 10 ni ayirish.
x=40
-80 ni -2 ga bo'lish.
x=30 x=40
Tenglama yechildi.
3000+70x-x^{2}=4200
100-x ga 30+x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
70x-x^{2}=4200-3000
Ikkala tarafdan 3000 ni ayirish.
70x-x^{2}=1200
1200 olish uchun 4200 dan 3000 ni ayirish.
-x^{2}+70x=1200
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+70x}{-1}=\frac{1200}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{70}{-1}x=\frac{1200}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-70x=\frac{1200}{-1}
70 ni -1 ga bo'lish.
x^{2}-70x=-1200
1200 ni -1 ga bo'lish.
x^{2}-70x+\left(-35\right)^{2}=-1200+\left(-35\right)^{2}
-70 ni bo‘lish, x shartining koeffitsienti, 2 ga -35 olish uchun. Keyin, -35 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-70x+1225=-1200+1225
-35 kvadratini chiqarish.
x^{2}-70x+1225=25
-1200 ni 1225 ga qo'shish.
\left(x-35\right)^{2}=25
x^{2}-70x+1225 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-35\right)^{2}}=\sqrt{25}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-35=5 x-35=-5
Qisqartirish.
x=40 x=30
35 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}