x uchun yechish
x=40
Grafik
Baham ko'rish
Klipbordga nusxa olish
160x-3000-2x^{2}=200
100-2x ga x-30 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
160x-3000-2x^{2}-200=0
Ikkala tarafdan 200 ni ayirish.
160x-3200-2x^{2}=0
-3200 olish uchun -3000 dan 200 ni ayirish.
-2x^{2}+160x-3200=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-160±\sqrt{160^{2}-4\left(-2\right)\left(-3200\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 160 ni b va -3200 ni c bilan almashtiring.
x=\frac{-160±\sqrt{25600-4\left(-2\right)\left(-3200\right)}}{2\left(-2\right)}
160 kvadratini chiqarish.
x=\frac{-160±\sqrt{25600+8\left(-3200\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-160±\sqrt{25600-25600}}{2\left(-2\right)}
8 ni -3200 marotabaga ko'paytirish.
x=\frac{-160±\sqrt{0}}{2\left(-2\right)}
25600 ni -25600 ga qo'shish.
x=-\frac{160}{2\left(-2\right)}
0 ning kvadrat ildizini chiqarish.
x=-\frac{160}{-4}
2 ni -2 marotabaga ko'paytirish.
x=40
-160 ni -4 ga bo'lish.
160x-3000-2x^{2}=200
100-2x ga x-30 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
160x-2x^{2}=200+3000
3000 ni ikki tarafga qo’shing.
160x-2x^{2}=3200
3200 olish uchun 200 va 3000'ni qo'shing.
-2x^{2}+160x=3200
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}+160x}{-2}=\frac{3200}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{160}{-2}x=\frac{3200}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-80x=\frac{3200}{-2}
160 ni -2 ga bo'lish.
x^{2}-80x=-1600
3200 ni -2 ga bo'lish.
x^{2}-80x+\left(-40\right)^{2}=-1600+\left(-40\right)^{2}
-80 ni bo‘lish, x shartining koeffitsienti, 2 ga -40 olish uchun. Keyin, -40 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-80x+1600=-1600+1600
-40 kvadratini chiqarish.
x^{2}-80x+1600=0
-1600 ni 1600 ga qo'shish.
\left(x-40\right)^{2}=0
x^{2}-80x+1600 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-40\right)^{2}}=\sqrt{0}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-40=0 x-40=0
Qisqartirish.
x=40 x=40
40 ni tenglamaning ikkala tarafiga qo'shish.
x=40
Tenglama yechildi. Yechimlar bir xil.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}