x uchun yechish
x=2\sqrt{6}+3\approx 7,898979486
x=3-2\sqrt{6}\approx -1,898979486
Grafik
Baham ko'rish
Klipbordga nusxa olish
2000+300x-50x^{2}=1250
10-x ga 200+50x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2000+300x-50x^{2}-1250=0
Ikkala tarafdan 1250 ni ayirish.
750+300x-50x^{2}=0
750 olish uchun 2000 dan 1250 ni ayirish.
-50x^{2}+300x+750=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-300±\sqrt{300^{2}-4\left(-50\right)\times 750}}{2\left(-50\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -50 ni a, 300 ni b va 750 ni c bilan almashtiring.
x=\frac{-300±\sqrt{90000-4\left(-50\right)\times 750}}{2\left(-50\right)}
300 kvadratini chiqarish.
x=\frac{-300±\sqrt{90000+200\times 750}}{2\left(-50\right)}
-4 ni -50 marotabaga ko'paytirish.
x=\frac{-300±\sqrt{90000+150000}}{2\left(-50\right)}
200 ni 750 marotabaga ko'paytirish.
x=\frac{-300±\sqrt{240000}}{2\left(-50\right)}
90000 ni 150000 ga qo'shish.
x=\frac{-300±200\sqrt{6}}{2\left(-50\right)}
240000 ning kvadrat ildizini chiqarish.
x=\frac{-300±200\sqrt{6}}{-100}
2 ni -50 marotabaga ko'paytirish.
x=\frac{200\sqrt{6}-300}{-100}
x=\frac{-300±200\sqrt{6}}{-100} tenglamasini yeching, bunda ± musbat. -300 ni 200\sqrt{6} ga qo'shish.
x=3-2\sqrt{6}
-300+200\sqrt{6} ni -100 ga bo'lish.
x=\frac{-200\sqrt{6}-300}{-100}
x=\frac{-300±200\sqrt{6}}{-100} tenglamasini yeching, bunda ± manfiy. -300 dan 200\sqrt{6} ni ayirish.
x=2\sqrt{6}+3
-300-200\sqrt{6} ni -100 ga bo'lish.
x=3-2\sqrt{6} x=2\sqrt{6}+3
Tenglama yechildi.
2000+300x-50x^{2}=1250
10-x ga 200+50x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
300x-50x^{2}=1250-2000
Ikkala tarafdan 2000 ni ayirish.
300x-50x^{2}=-750
-750 olish uchun 1250 dan 2000 ni ayirish.
-50x^{2}+300x=-750
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-50x^{2}+300x}{-50}=-\frac{750}{-50}
Ikki tarafini -50 ga bo‘ling.
x^{2}+\frac{300}{-50}x=-\frac{750}{-50}
-50 ga bo'lish -50 ga ko'paytirishni bekor qiladi.
x^{2}-6x=-\frac{750}{-50}
300 ni -50 ga bo'lish.
x^{2}-6x=15
-750 ni -50 ga bo'lish.
x^{2}-6x+\left(-3\right)^{2}=15+\left(-3\right)^{2}
-6 ni bo‘lish, x shartining koeffitsienti, 2 ga -3 olish uchun. Keyin, -3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-6x+9=15+9
-3 kvadratini chiqarish.
x^{2}-6x+9=24
15 ni 9 ga qo'shish.
\left(x-3\right)^{2}=24
x^{2}-6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-3\right)^{2}}=\sqrt{24}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-3=2\sqrt{6} x-3=-2\sqrt{6}
Qisqartirish.
x=2\sqrt{6}+3 x=3-2\sqrt{6}
3 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}