x uchun yechish
x=10
x=20
Grafik
Baham ko'rish
Klipbordga nusxa olish
8000+600x-20x^{2}=12000
10+x ga 800-20x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
8000+600x-20x^{2}-12000=0
Ikkala tarafdan 12000 ni ayirish.
-4000+600x-20x^{2}=0
-4000 olish uchun 8000 dan 12000 ni ayirish.
-20x^{2}+600x-4000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-600±\sqrt{600^{2}-4\left(-20\right)\left(-4000\right)}}{2\left(-20\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -20 ni a, 600 ni b va -4000 ni c bilan almashtiring.
x=\frac{-600±\sqrt{360000-4\left(-20\right)\left(-4000\right)}}{2\left(-20\right)}
600 kvadratini chiqarish.
x=\frac{-600±\sqrt{360000+80\left(-4000\right)}}{2\left(-20\right)}
-4 ni -20 marotabaga ko'paytirish.
x=\frac{-600±\sqrt{360000-320000}}{2\left(-20\right)}
80 ni -4000 marotabaga ko'paytirish.
x=\frac{-600±\sqrt{40000}}{2\left(-20\right)}
360000 ni -320000 ga qo'shish.
x=\frac{-600±200}{2\left(-20\right)}
40000 ning kvadrat ildizini chiqarish.
x=\frac{-600±200}{-40}
2 ni -20 marotabaga ko'paytirish.
x=-\frac{400}{-40}
x=\frac{-600±200}{-40} tenglamasini yeching, bunda ± musbat. -600 ni 200 ga qo'shish.
x=10
-400 ni -40 ga bo'lish.
x=-\frac{800}{-40}
x=\frac{-600±200}{-40} tenglamasini yeching, bunda ± manfiy. -600 dan 200 ni ayirish.
x=20
-800 ni -40 ga bo'lish.
x=10 x=20
Tenglama yechildi.
8000+600x-20x^{2}=12000
10+x ga 800-20x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
600x-20x^{2}=12000-8000
Ikkala tarafdan 8000 ni ayirish.
600x-20x^{2}=4000
4000 olish uchun 12000 dan 8000 ni ayirish.
-20x^{2}+600x=4000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-20x^{2}+600x}{-20}=\frac{4000}{-20}
Ikki tarafini -20 ga bo‘ling.
x^{2}+\frac{600}{-20}x=\frac{4000}{-20}
-20 ga bo'lish -20 ga ko'paytirishni bekor qiladi.
x^{2}-30x=\frac{4000}{-20}
600 ni -20 ga bo'lish.
x^{2}-30x=-200
4000 ni -20 ga bo'lish.
x^{2}-30x+\left(-15\right)^{2}=-200+\left(-15\right)^{2}
-30 ni bo‘lish, x shartining koeffitsienti, 2 ga -15 olish uchun. Keyin, -15 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-30x+225=-200+225
-15 kvadratini chiqarish.
x^{2}-30x+225=25
-200 ni 225 ga qo'shish.
\left(x-15\right)^{2}=25
x^{2}-30x+225 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-15\right)^{2}}=\sqrt{25}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-15=5 x-15=-5
Qisqartirish.
x=20 x=10
15 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}