x uchun yechish
x=3
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
2500-1100x+96x^{2}=\left(-50+14x\right)^{2}
-50+6x ga -50+16x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2500-1100x+96x^{2}=2500-1400x+196x^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(-50+14x\right)^{2} kengaytirilishi uchun ishlating.
2500-1100x+96x^{2}-2500=-1400x+196x^{2}
Ikkala tarafdan 2500 ni ayirish.
-1100x+96x^{2}=-1400x+196x^{2}
0 olish uchun 2500 dan 2500 ni ayirish.
-1100x+96x^{2}+1400x=196x^{2}
1400x ni ikki tarafga qo’shing.
300x+96x^{2}=196x^{2}
300x ni olish uchun -1100x va 1400x ni birlashtirish.
300x+96x^{2}-196x^{2}=0
Ikkala tarafdan 196x^{2} ni ayirish.
300x-100x^{2}=0
-100x^{2} ni olish uchun 96x^{2} va -196x^{2} ni birlashtirish.
x\left(300-100x\right)=0
x omili.
x=0 x=3
Tenglamani yechish uchun x=0 va 300-100x=0 ni yeching.
2500-1100x+96x^{2}=\left(-50+14x\right)^{2}
-50+6x ga -50+16x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2500-1100x+96x^{2}=2500-1400x+196x^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(-50+14x\right)^{2} kengaytirilishi uchun ishlating.
2500-1100x+96x^{2}-2500=-1400x+196x^{2}
Ikkala tarafdan 2500 ni ayirish.
-1100x+96x^{2}=-1400x+196x^{2}
0 olish uchun 2500 dan 2500 ni ayirish.
-1100x+96x^{2}+1400x=196x^{2}
1400x ni ikki tarafga qo’shing.
300x+96x^{2}=196x^{2}
300x ni olish uchun -1100x va 1400x ni birlashtirish.
300x+96x^{2}-196x^{2}=0
Ikkala tarafdan 196x^{2} ni ayirish.
300x-100x^{2}=0
-100x^{2} ni olish uchun 96x^{2} va -196x^{2} ni birlashtirish.
-100x^{2}+300x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-300±\sqrt{300^{2}}}{2\left(-100\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -100 ni a, 300 ni b va 0 ni c bilan almashtiring.
x=\frac{-300±300}{2\left(-100\right)}
300^{2} ning kvadrat ildizini chiqarish.
x=\frac{-300±300}{-200}
2 ni -100 marotabaga ko'paytirish.
x=\frac{0}{-200}
x=\frac{-300±300}{-200} tenglamasini yeching, bunda ± musbat. -300 ni 300 ga qo'shish.
x=0
0 ni -200 ga bo'lish.
x=-\frac{600}{-200}
x=\frac{-300±300}{-200} tenglamasini yeching, bunda ± manfiy. -300 dan 300 ni ayirish.
x=3
-600 ni -200 ga bo'lish.
x=0 x=3
Tenglama yechildi.
2500-1100x+96x^{2}=\left(-50+14x\right)^{2}
-50+6x ga -50+16x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2500-1100x+96x^{2}=2500-1400x+196x^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(-50+14x\right)^{2} kengaytirilishi uchun ishlating.
2500-1100x+96x^{2}+1400x=2500+196x^{2}
1400x ni ikki tarafga qo’shing.
2500+300x+96x^{2}=2500+196x^{2}
300x ni olish uchun -1100x va 1400x ni birlashtirish.
2500+300x+96x^{2}-196x^{2}=2500
Ikkala tarafdan 196x^{2} ni ayirish.
2500+300x-100x^{2}=2500
-100x^{2} ni olish uchun 96x^{2} va -196x^{2} ni birlashtirish.
300x-100x^{2}=2500-2500
Ikkala tarafdan 2500 ni ayirish.
300x-100x^{2}=0
0 olish uchun 2500 dan 2500 ni ayirish.
-100x^{2}+300x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-100x^{2}+300x}{-100}=\frac{0}{-100}
Ikki tarafini -100 ga bo‘ling.
x^{2}+\frac{300}{-100}x=\frac{0}{-100}
-100 ga bo'lish -100 ga ko'paytirishni bekor qiladi.
x^{2}-3x=\frac{0}{-100}
300 ni -100 ga bo'lish.
x^{2}-3x=0
0 ni -100 ga bo'lish.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{3}{2} x-\frac{3}{2}=-\frac{3}{2}
Qisqartirish.
x=3 x=0
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}