Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}-4x-6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -4 ni b va -6 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16+4\left(-6\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{16-24}}{2\left(-1\right)}
4 ni -6 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{-8}}{2\left(-1\right)}
16 ni -24 ga qo'shish.
x=\frac{-\left(-4\right)±2\sqrt{2}i}{2\left(-1\right)}
-8 ning kvadrat ildizini chiqarish.
x=\frac{4±2\sqrt{2}i}{2\left(-1\right)}
-4 ning teskarisi 4 ga teng.
x=\frac{4±2\sqrt{2}i}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{4+2\sqrt{2}i}{-2}
x=\frac{4±2\sqrt{2}i}{-2} tenglamasini yeching, bunda ± musbat. 4 ni 2i\sqrt{2} ga qo'shish.
x=-\sqrt{2}i-2
4+2i\sqrt{2} ni -2 ga bo'lish.
x=\frac{-2\sqrt{2}i+4}{-2}
x=\frac{4±2\sqrt{2}i}{-2} tenglamasini yeching, bunda ± manfiy. 4 dan 2i\sqrt{2} ni ayirish.
x=-2+\sqrt{2}i
4-2i\sqrt{2} ni -2 ga bo'lish.
x=-\sqrt{2}i-2 x=-2+\sqrt{2}i
Tenglama yechildi.
-x^{2}-4x-6=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-x^{2}-4x-6-\left(-6\right)=-\left(-6\right)
6 ni tenglamaning ikkala tarafiga qo'shish.
-x^{2}-4x=-\left(-6\right)
O‘zidan -6 ayirilsa 0 qoladi.
-x^{2}-4x=6
0 dan -6 ni ayirish.
\frac{-x^{2}-4x}{-1}=\frac{6}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{4}{-1}\right)x=\frac{6}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+4x=\frac{6}{-1}
-4 ni -1 ga bo'lish.
x^{2}+4x=-6
6 ni -1 ga bo'lish.
x^{2}+4x+2^{2}=-6+2^{2}
4 ni bo‘lish, x shartining koeffitsienti, 2 ga 2 olish uchun. Keyin, 2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+4x+4=-6+4
2 kvadratini chiqarish.
x^{2}+4x+4=-2
-6 ni 4 ga qo'shish.
\left(x+2\right)^{2}=-2
x^{2}+4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+2=\sqrt{2}i x+2=-\sqrt{2}i
Qisqartirish.
x=-2+\sqrt{2}i x=-\sqrt{2}i-2
Tenglamaning ikkala tarafidan 2 ni ayirish.