(- { y }^{ 2 } +3y+5=0)
y uchun yechish
y = \frac{\sqrt{29} + 3}{2} \approx 4,192582404
y=\frac{3-\sqrt{29}}{2}\approx -1,192582404
Grafik
Baham ko'rish
Klipbordga nusxa olish
-y^{2}+3y+5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 3 ni b va 5 ni c bilan almashtiring.
y=\frac{-3±\sqrt{9-4\left(-1\right)\times 5}}{2\left(-1\right)}
3 kvadratini chiqarish.
y=\frac{-3±\sqrt{9+4\times 5}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
y=\frac{-3±\sqrt{9+20}}{2\left(-1\right)}
4 ni 5 marotabaga ko'paytirish.
y=\frac{-3±\sqrt{29}}{2\left(-1\right)}
9 ni 20 ga qo'shish.
y=\frac{-3±\sqrt{29}}{-2}
2 ni -1 marotabaga ko'paytirish.
y=\frac{\sqrt{29}-3}{-2}
y=\frac{-3±\sqrt{29}}{-2} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{29} ga qo'shish.
y=\frac{3-\sqrt{29}}{2}
-3+\sqrt{29} ni -2 ga bo'lish.
y=\frac{-\sqrt{29}-3}{-2}
y=\frac{-3±\sqrt{29}}{-2} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{29} ni ayirish.
y=\frac{\sqrt{29}+3}{2}
-3-\sqrt{29} ni -2 ga bo'lish.
y=\frac{3-\sqrt{29}}{2} y=\frac{\sqrt{29}+3}{2}
Tenglama yechildi.
-y^{2}+3y+5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-y^{2}+3y+5-5=-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
-y^{2}+3y=-5
O‘zidan 5 ayirilsa 0 qoladi.
\frac{-y^{2}+3y}{-1}=-\frac{5}{-1}
Ikki tarafini -1 ga bo‘ling.
y^{2}+\frac{3}{-1}y=-\frac{5}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
y^{2}-3y=-\frac{5}{-1}
3 ni -1 ga bo'lish.
y^{2}-3y=5
-5 ni -1 ga bo'lish.
y^{2}-3y+\left(-\frac{3}{2}\right)^{2}=5+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-3y+\frac{9}{4}=5+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
y^{2}-3y+\frac{9}{4}=\frac{29}{4}
5 ni \frac{9}{4} ga qo'shish.
\left(y-\frac{3}{2}\right)^{2}=\frac{29}{4}
y^{2}-3y+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-\frac{3}{2}\right)^{2}}=\sqrt{\frac{29}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-\frac{3}{2}=\frac{\sqrt{29}}{2} y-\frac{3}{2}=-\frac{\sqrt{29}}{2}
Qisqartirish.
y=\frac{\sqrt{29}+3}{2} y=\frac{3-\sqrt{29}}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}