Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-y^{2}+3y+5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 3 ni b va 5 ni c bilan almashtiring.
y=\frac{-3±\sqrt{9-4\left(-1\right)\times 5}}{2\left(-1\right)}
3 kvadratini chiqarish.
y=\frac{-3±\sqrt{9+4\times 5}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
y=\frac{-3±\sqrt{9+20}}{2\left(-1\right)}
4 ni 5 marotabaga ko'paytirish.
y=\frac{-3±\sqrt{29}}{2\left(-1\right)}
9 ni 20 ga qo'shish.
y=\frac{-3±\sqrt{29}}{-2}
2 ni -1 marotabaga ko'paytirish.
y=\frac{\sqrt{29}-3}{-2}
y=\frac{-3±\sqrt{29}}{-2} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{29} ga qo'shish.
y=\frac{3-\sqrt{29}}{2}
-3+\sqrt{29} ni -2 ga bo'lish.
y=\frac{-\sqrt{29}-3}{-2}
y=\frac{-3±\sqrt{29}}{-2} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{29} ni ayirish.
y=\frac{\sqrt{29}+3}{2}
-3-\sqrt{29} ni -2 ga bo'lish.
y=\frac{3-\sqrt{29}}{2} y=\frac{\sqrt{29}+3}{2}
Tenglama yechildi.
-y^{2}+3y+5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-y^{2}+3y+5-5=-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
-y^{2}+3y=-5
O‘zidan 5 ayirilsa 0 qoladi.
\frac{-y^{2}+3y}{-1}=-\frac{5}{-1}
Ikki tarafini -1 ga bo‘ling.
y^{2}+\frac{3}{-1}y=-\frac{5}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
y^{2}-3y=-\frac{5}{-1}
3 ni -1 ga bo'lish.
y^{2}-3y=5
-5 ni -1 ga bo'lish.
y^{2}-3y+\left(-\frac{3}{2}\right)^{2}=5+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-3y+\frac{9}{4}=5+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
y^{2}-3y+\frac{9}{4}=\frac{29}{4}
5 ni \frac{9}{4} ga qo'shish.
\left(y-\frac{3}{2}\right)^{2}=\frac{29}{4}
y^{2}-3y+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-\frac{3}{2}\right)^{2}}=\sqrt{\frac{29}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-\frac{3}{2}=\frac{\sqrt{29}}{2} y-\frac{3}{2}=-\frac{\sqrt{29}}{2}
Qisqartirish.
y=\frac{\sqrt{29}+3}{2} y=\frac{3-\sqrt{29}}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.