Baholash
\text{Indeterminate}
Baham ko'rish
Klipbordga nusxa olish
\frac{-10}{\sqrt{8-11}-3}
-10 olish uchun -11 va 1'ni qo'shing.
\frac{-10}{\sqrt{-3}-3}
-3 olish uchun 8 dan 11 ni ayirish.
\frac{-10\left(\sqrt{-3}+3\right)}{\left(\sqrt{-3}-3\right)\left(\sqrt{-3}+3\right)}
\frac{-10}{\sqrt{-3}-3} maxrajini \sqrt{-3}+3 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{-10\left(\sqrt{-3}+3\right)}{\left(\sqrt{-3}\right)^{2}-3^{2}}
Hisoblang: \left(\sqrt{-3}-3\right)\left(\sqrt{-3}+3\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-10\left(\sqrt{-3}+3\right)}{-3-9}
\sqrt{-3} kvadratini chiqarish. 3 kvadratini chiqarish.
\frac{-10\left(\sqrt{-3}+3\right)}{-12}
-12 olish uchun -3 dan 9 ni ayirish.
\frac{5}{6}\left(\sqrt{-3}+3\right)
\frac{5}{6}\left(\sqrt{-3}+3\right) ni olish uchun -10\left(\sqrt{-3}+3\right) ni -12 ga bo‘ling.
\frac{5}{6}\sqrt{-3}+\frac{5}{6}\times 3
\frac{5}{6} ga \sqrt{-3}+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{5}{6}\sqrt{-3}+\frac{5\times 3}{6}
\frac{5}{6}\times 3 ni yagona kasrga aylantiring.
\frac{5}{6}\sqrt{-3}+\frac{15}{6}
15 hosil qilish uchun 5 va 3 ni ko'paytirish.
\frac{5}{6}\sqrt{-3}+\frac{5}{2}
\frac{15}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}