Baholash
\frac{121}{12}\approx 10,083333333
Omil
\frac{11 ^ {2}}{2 ^ {2} \cdot 3} = 10\frac{1}{12} = 10,083333333333334
Viktorina
Arithmetic
5xshash muammolar:
(((-4)+4+(-8)-6-(-3)) \times (-3+5-7-8-9)) \div (((-2+12)-(-14)))
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(-8-6-\left(-3\right)\right)\left(-3+5-7-8-9\right)}{-2+12-\left(-14\right)}
0 olish uchun -4 va 4'ni qo'shing.
\frac{\left(-14-\left(-3\right)\right)\left(-3+5-7-8-9\right)}{-2+12-\left(-14\right)}
-14 olish uchun -8 dan 6 ni ayirish.
\frac{\left(-14+3\right)\left(-3+5-7-8-9\right)}{-2+12-\left(-14\right)}
-3 ning teskarisi 3 ga teng.
\frac{-11\left(-3+5-7-8-9\right)}{-2+12-\left(-14\right)}
-11 olish uchun -14 va 3'ni qo'shing.
\frac{-11\left(2-7-8-9\right)}{-2+12-\left(-14\right)}
2 olish uchun -3 va 5'ni qo'shing.
\frac{-11\left(-5-8-9\right)}{-2+12-\left(-14\right)}
-5 olish uchun 2 dan 7 ni ayirish.
\frac{-11\left(-13-9\right)}{-2+12-\left(-14\right)}
-13 olish uchun -5 dan 8 ni ayirish.
\frac{-11\left(-22\right)}{-2+12-\left(-14\right)}
-22 olish uchun -13 dan 9 ni ayirish.
\frac{242}{-2+12-\left(-14\right)}
242 hosil qilish uchun -11 va -22 ni ko'paytirish.
\frac{242}{10-\left(-14\right)}
10 olish uchun -2 va 12'ni qo'shing.
\frac{242}{10+14}
-14 ning teskarisi 14 ga teng.
\frac{242}{24}
24 olish uchun 10 va 14'ni qo'shing.
\frac{121}{12}
\frac{242}{24} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}