Asosiy tarkibga oʻtish
z uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

z^{2}-1=1
Hisoblang: \left(z+1\right)\left(z-1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
z^{2}=1+1
1 ni ikki tarafga qo’shing.
z^{2}=2
2 olish uchun 1 va 1'ni qo'shing.
z=\sqrt{2} z=-\sqrt{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
z^{2}-1=1
Hisoblang: \left(z+1\right)\left(z-1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
z^{2}-1-1=0
Ikkala tarafdan 1 ni ayirish.
z^{2}-2=0
-2 olish uchun -1 dan 1 ni ayirish.
z=\frac{0±\sqrt{0^{2}-4\left(-2\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -2 ni c bilan almashtiring.
z=\frac{0±\sqrt{-4\left(-2\right)}}{2}
0 kvadratini chiqarish.
z=\frac{0±\sqrt{8}}{2}
-4 ni -2 marotabaga ko'paytirish.
z=\frac{0±2\sqrt{2}}{2}
8 ning kvadrat ildizini chiqarish.
z=\sqrt{2}
z=\frac{0±2\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat.
z=-\sqrt{2}
z=\frac{0±2\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy.
z=\sqrt{2} z=-\sqrt{2}
Tenglama yechildi.