z uchun yechish
z=\sqrt{2}\approx 1,414213562
z=-\sqrt{2}\approx -1,414213562
Viktorina
Polynomial
( z + 1 ) ( z - 1 ) = 1
Baham ko'rish
Klipbordga nusxa olish
z^{2}-1=1
Hisoblang: \left(z+1\right)\left(z-1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
z^{2}=1+1
1 ni ikki tarafga qo’shing.
z^{2}=2
2 olish uchun 1 va 1'ni qo'shing.
z=\sqrt{2} z=-\sqrt{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
z^{2}-1=1
Hisoblang: \left(z+1\right)\left(z-1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
z^{2}-1-1=0
Ikkala tarafdan 1 ni ayirish.
z^{2}-2=0
-2 olish uchun -1 dan 1 ni ayirish.
z=\frac{0±\sqrt{0^{2}-4\left(-2\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -2 ni c bilan almashtiring.
z=\frac{0±\sqrt{-4\left(-2\right)}}{2}
0 kvadratini chiqarish.
z=\frac{0±\sqrt{8}}{2}
-4 ni -2 marotabaga ko'paytirish.
z=\frac{0±2\sqrt{2}}{2}
8 ning kvadrat ildizini chiqarish.
z=\sqrt{2}
z=\frac{0±2\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat.
z=-\sqrt{2}
z=\frac{0±2\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy.
z=\sqrt{2} z=-\sqrt{2}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}