( y ^ { 2 } - 1 ) \cdot d x = ( x - 1 ) \cdot y \cdot d y
d uchun yechish (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=y^{2}\end{matrix}\right,
x uchun yechish (complex solution)
\left\{\begin{matrix}\\x=y^{2}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\end{matrix}\right,
d uchun yechish
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x=y^{2}\end{matrix}\right,
x uchun yechish
\left\{\begin{matrix}\\x=y^{2}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right,
Grafik
Viktorina
Linear Equation
5xshash muammolar:
( y ^ { 2 } - 1 ) \cdot d x = ( x - 1 ) \cdot y \cdot d y
Baham ko'rish
Klipbordga nusxa olish
\left(y^{2}-1\right)dx=\left(x-1\right)y^{2}d
y^{2} hosil qilish uchun y va y ni ko'paytirish.
\left(y^{2}d-d\right)x=\left(x-1\right)y^{2}d
y^{2}-1 ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y^{2}dx-dx=\left(x-1\right)y^{2}d
y^{2}d-d ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y^{2}dx-dx=\left(xy^{2}-y^{2}\right)d
x-1 ga y^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y^{2}dx-dx=xy^{2}d-y^{2}d
xy^{2}-y^{2} ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y^{2}dx-dx-xy^{2}d=-y^{2}d
Ikkala tarafdan xy^{2}d ni ayirish.
-dx=-y^{2}d
0 ni olish uchun y^{2}dx va -xy^{2}d ni birlashtirish.
-dx+y^{2}d=0
y^{2}d ni ikki tarafga qo’shing.
\left(-x+y^{2}\right)d=0
d'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(y^{2}-x\right)d=0
Tenglama standart shaklda.
d=0
0 ni -x+y^{2} ga bo'lish.
\left(y^{2}-1\right)dx=\left(x-1\right)y^{2}d
y^{2} hosil qilish uchun y va y ni ko'paytirish.
\left(y^{2}d-d\right)x=\left(x-1\right)y^{2}d
y^{2}-1 ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y^{2}dx-dx=\left(x-1\right)y^{2}d
y^{2}d-d ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y^{2}dx-dx=\left(xy^{2}-y^{2}\right)d
x-1 ga y^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y^{2}dx-dx=xy^{2}d-y^{2}d
xy^{2}-y^{2} ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y^{2}dx-dx-xy^{2}d=-y^{2}d
Ikkala tarafdan xy^{2}d ni ayirish.
-dx=-y^{2}d
0 ni olish uchun y^{2}dx va -xy^{2}d ni birlashtirish.
dx=y^{2}d
-1ni ikki tarafidan bekor qilish.
dx=dy^{2}
Tenglama standart shaklda.
\frac{dx}{d}=\frac{dy^{2}}{d}
Ikki tarafini d ga bo‘ling.
x=\frac{dy^{2}}{d}
d ga bo'lish d ga ko'paytirishni bekor qiladi.
x=y^{2}
y^{2}d ni d ga bo'lish.
\left(y^{2}-1\right)dx=\left(x-1\right)y^{2}d
y^{2} hosil qilish uchun y va y ni ko'paytirish.
\left(y^{2}d-d\right)x=\left(x-1\right)y^{2}d
y^{2}-1 ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y^{2}dx-dx=\left(x-1\right)y^{2}d
y^{2}d-d ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y^{2}dx-dx=\left(xy^{2}-y^{2}\right)d
x-1 ga y^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y^{2}dx-dx=xy^{2}d-y^{2}d
xy^{2}-y^{2} ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y^{2}dx-dx-xy^{2}d=-y^{2}d
Ikkala tarafdan xy^{2}d ni ayirish.
-dx=-y^{2}d
0 ni olish uchun y^{2}dx va -xy^{2}d ni birlashtirish.
-dx+y^{2}d=0
y^{2}d ni ikki tarafga qo’shing.
\left(-x+y^{2}\right)d=0
d'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(y^{2}-x\right)d=0
Tenglama standart shaklda.
d=0
0 ni -x+y^{2} ga bo'lish.
\left(y^{2}-1\right)dx=\left(x-1\right)y^{2}d
y^{2} hosil qilish uchun y va y ni ko'paytirish.
\left(y^{2}d-d\right)x=\left(x-1\right)y^{2}d
y^{2}-1 ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y^{2}dx-dx=\left(x-1\right)y^{2}d
y^{2}d-d ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y^{2}dx-dx=\left(xy^{2}-y^{2}\right)d
x-1 ga y^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y^{2}dx-dx=xy^{2}d-y^{2}d
xy^{2}-y^{2} ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y^{2}dx-dx-xy^{2}d=-y^{2}d
Ikkala tarafdan xy^{2}d ni ayirish.
-dx=-y^{2}d
0 ni olish uchun y^{2}dx va -xy^{2}d ni birlashtirish.
dx=y^{2}d
-1ni ikki tarafidan bekor qilish.
dx=dy^{2}
Tenglama standart shaklda.
\frac{dx}{d}=\frac{dy^{2}}{d}
Ikki tarafini d ga bo‘ling.
x=\frac{dy^{2}}{d}
d ga bo'lish d ga ko'paytirishni bekor qiladi.
x=y^{2}
y^{2}d ni d ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}