( y + \frac { y ^ { 3 } } { 3 } + \frac { x ^ { 2 } } { 2 } ) d x + \frac { 1 } { 4 } ( x + x y ^ { 2 } ) d y = 0
d uchun yechish
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x=0\text{ or }y=\frac{7^{\frac{2}{3}}}{7}\left(\sqrt[3]{\frac{\sqrt{441x^{4}+875}}{7}-3x^{2}}-\sqrt[3]{\frac{\sqrt{441x^{4}+875}}{7}+3x^{2}}\right)\end{matrix}\right,
x uchun yechish
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=\frac{\sqrt{-42y^{3}-90y}}{6}\text{; }x=-\frac{\sqrt{-42y^{3}-90y}}{6}\text{, }&y\leq 0\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
12\left(y+\frac{y^{3}}{3}+\frac{x^{2}}{2}\right)dx+3\left(x+xy^{2}\right)dy=0
Tenglamaning ikkala tarafini 12 ga, 3,2,4 ning eng kichik karralisiga ko‘paytiring.
12\left(y+\frac{2y^{3}}{6}+\frac{3x^{2}}{6}\right)dx+3\left(x+xy^{2}\right)dy=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 3 va 2 ning eng kichik umumiy karralisi 6. \frac{y^{3}}{3} ni \frac{2}{2} marotabaga ko'paytirish. \frac{x^{2}}{2} ni \frac{3}{3} marotabaga ko'paytirish.
12\left(y+\frac{2y^{3}+3x^{2}}{6}\right)dx+3\left(x+xy^{2}\right)dy=0
\frac{2y^{3}}{6} va \frac{3x^{2}}{6} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\left(12y+12\times \frac{2y^{3}+3x^{2}}{6}\right)dx+3\left(x+xy^{2}\right)dy=0
12 ga y+\frac{2y^{3}+3x^{2}}{6} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(12y+2\left(2y^{3}+3x^{2}\right)\right)dx+3\left(x+xy^{2}\right)dy=0
12 va 6 ichida eng katta umumiy 6 faktorini bekor qiling.
\left(12y+4y^{3}+6x^{2}\right)dx+3\left(x+xy^{2}\right)dy=0
2 ga 2y^{3}+3x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(12yd+4y^{3}d+6x^{2}d\right)x+3\left(x+xy^{2}\right)dy=0
12y+4y^{3}+6x^{2} ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
12ydx+4y^{3}dx+6dx^{3}+3\left(x+xy^{2}\right)dy=0
12yd+4y^{3}d+6x^{2}d ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
12ydx+4y^{3}dx+6dx^{3}+\left(3x+3xy^{2}\right)dy=0
3 ga x+xy^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
12ydx+4y^{3}dx+6dx^{3}+\left(3xd+3xy^{2}d\right)y=0
3x+3xy^{2} ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
12ydx+4y^{3}dx+6dx^{3}+3xdy+3xdy^{3}=0
3xd+3xy^{2}d ga y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
15ydx+4y^{3}dx+6dx^{3}+3xdy^{3}=0
15ydx ni olish uchun 12ydx va 3xdy ni birlashtirish.
15ydx+7y^{3}dx+6dx^{3}=0
7y^{3}dx ni olish uchun 4y^{3}dx va 3xdy^{3} ni birlashtirish.
\left(15yx+7y^{3}x+6x^{3}\right)d=0
d'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(6x^{3}+7xy^{3}+15xy\right)d=0
Tenglama standart shaklda.
d=0
0 ni 15yx+7y^{3}x+6x^{3} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}