Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{3}-a^{3}-a^{2}x-\left(x+a\right)\left(x-a\right)\left(x-1\right)+a^{2}\left(a-3\right)+\left(2a-x\right)^{2}
x-a ga x^{2}+ax+a^{2} ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-a^{3}-a^{2}x-\left(x^{2}-a^{2}\right)\left(x-1\right)+a^{2}\left(a-3\right)+\left(2a-x\right)^{2}
x+a ga x-a ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-a^{3}-a^{2}x-\left(x^{3}-x^{2}-a^{2}x+a^{2}\right)+a^{2}\left(a-3\right)+\left(2a-x\right)^{2}
x^{2}-a^{2} ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x-a^{2}+a^{2}\left(a-3\right)+\left(2a-x\right)^{2}
x^{3}-x^{2}-a^{2}x+a^{2} teskarisini topish uchun har birining teskarisini toping.
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x-a^{2}+a^{3}-3a^{2}+\left(2a-x\right)^{2}
a^{2} ga a-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x-4a^{2}+a^{3}+\left(2a-x\right)^{2}
-4a^{2} ni olish uchun -a^{2} va -3a^{2} ni birlashtirish.
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x-4a^{2}+a^{3}+4a^{2}-4ax+x^{2}
\left(p-q\right)^{2}=p^{2}-2pq+q^{2} binom teoremasini \left(2a-x\right)^{2} kengaytirilishi uchun ishlating.
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x+a^{3}-4ax+x^{2}
0 ni olish uchun -4a^{2} va 4a^{2} ni birlashtirish.
x^{3}-a^{3}-a^{2}x-x^{3}+2x^{2}+a^{2}x+a^{3}-4ax
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
-a^{3}-a^{2}x+2x^{2}+a^{2}x+a^{3}-4ax
0 ni olish uchun x^{3} va -x^{3} ni birlashtirish.
-a^{3}+2x^{2}+a^{3}-4ax
0 ni olish uchun -a^{2}x va a^{2}x ni birlashtirish.
2x^{2}-4ax
0 ni olish uchun -a^{3} va a^{3} ni birlashtirish.
x^{3}-a^{3}-a^{2}x-\left(x+a\right)\left(x-a\right)\left(x-1\right)+a^{2}\left(a-3\right)+\left(2a-x\right)^{2}
x-a ga x^{2}+ax+a^{2} ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-a^{3}-a^{2}x-\left(x^{2}-a^{2}\right)\left(x-1\right)+a^{2}\left(a-3\right)+\left(2a-x\right)^{2}
x+a ga x-a ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-a^{3}-a^{2}x-\left(x^{3}-x^{2}-a^{2}x+a^{2}\right)+a^{2}\left(a-3\right)+\left(2a-x\right)^{2}
x^{2}-a^{2} ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x-a^{2}+a^{2}\left(a-3\right)+\left(2a-x\right)^{2}
x^{3}-x^{2}-a^{2}x+a^{2} teskarisini topish uchun har birining teskarisini toping.
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x-a^{2}+a^{3}-3a^{2}+\left(2a-x\right)^{2}
a^{2} ga a-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x-4a^{2}+a^{3}+\left(2a-x\right)^{2}
-4a^{2} ni olish uchun -a^{2} va -3a^{2} ni birlashtirish.
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x-4a^{2}+a^{3}+4a^{2}-4ax+x^{2}
\left(p-q\right)^{2}=p^{2}-2pq+q^{2} binom teoremasini \left(2a-x\right)^{2} kengaytirilishi uchun ishlating.
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x+a^{3}-4ax+x^{2}
0 ni olish uchun -4a^{2} va 4a^{2} ni birlashtirish.
x^{3}-a^{3}-a^{2}x-x^{3}+2x^{2}+a^{2}x+a^{3}-4ax
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
-a^{3}-a^{2}x+2x^{2}+a^{2}x+a^{3}-4ax
0 ni olish uchun x^{3} va -x^{3} ni birlashtirish.
-a^{3}+2x^{2}+a^{3}-4ax
0 ni olish uchun -a^{2}x va a^{2}x ni birlashtirish.
2x^{2}-4ax
0 ni olish uchun -a^{3} va a^{3} ni birlashtirish.