Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-16x+64=x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-8\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-16x+64-x=0
Ikkala tarafdan x ni ayirish.
x^{2}-17x+64=0
-17x ni olish uchun -16x va -x ni birlashtirish.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 64}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -17 ni b va 64 ni c bilan almashtiring.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 64}}{2}
-17 kvadratini chiqarish.
x=\frac{-\left(-17\right)±\sqrt{289-256}}{2}
-4 ni 64 marotabaga ko'paytirish.
x=\frac{-\left(-17\right)±\sqrt{33}}{2}
289 ni -256 ga qo'shish.
x=\frac{17±\sqrt{33}}{2}
-17 ning teskarisi 17 ga teng.
x=\frac{\sqrt{33}+17}{2}
x=\frac{17±\sqrt{33}}{2} tenglamasini yeching, bunda ± musbat. 17 ni \sqrt{33} ga qo'shish.
x=\frac{17-\sqrt{33}}{2}
x=\frac{17±\sqrt{33}}{2} tenglamasini yeching, bunda ± manfiy. 17 dan \sqrt{33} ni ayirish.
x=\frac{\sqrt{33}+17}{2} x=\frac{17-\sqrt{33}}{2}
Tenglama yechildi.
x^{2}-16x+64=x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-8\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-16x+64-x=0
Ikkala tarafdan x ni ayirish.
x^{2}-17x+64=0
-17x ni olish uchun -16x va -x ni birlashtirish.
x^{2}-17x=-64
Ikkala tarafdan 64 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-17x+\left(-\frac{17}{2}\right)^{2}=-64+\left(-\frac{17}{2}\right)^{2}
-17 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{17}{2} olish uchun. Keyin, -\frac{17}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-17x+\frac{289}{4}=-64+\frac{289}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{17}{2} kvadratini chiqarish.
x^{2}-17x+\frac{289}{4}=\frac{33}{4}
-64 ni \frac{289}{4} ga qo'shish.
\left(x-\frac{17}{2}\right)^{2}=\frac{33}{4}
x^{2}-17x+\frac{289}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{17}{2}\right)^{2}}=\sqrt{\frac{33}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{17}{2}=\frac{\sqrt{33}}{2} x-\frac{17}{2}=-\frac{\sqrt{33}}{2}
Qisqartirish.
x=\frac{\sqrt{33}+17}{2} x=\frac{17-\sqrt{33}}{2}
\frac{17}{2} ni tenglamaning ikkala tarafiga qo'shish.