x uchun yechish
x=60
x=80
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-40\right)\left(500-\left(10x-500\right)\right)=8000
x-50 ga 10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(x-40\right)\left(500-10x-\left(-500\right)\right)=8000
10x-500 teskarisini topish uchun har birining teskarisini toping.
\left(x-40\right)\left(500-10x+500\right)=8000
-500 ning teskarisi 500 ga teng.
\left(x-40\right)\left(1000-10x\right)=8000
1000 olish uchun 500 va 500'ni qo'shing.
1000x-10x^{2}-40000+400x=8000
x-40 ifodaning har bir elementini 1000-10x ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
1400x-10x^{2}-40000=8000
1400x ni olish uchun 1000x va 400x ni birlashtirish.
1400x-10x^{2}-40000-8000=0
Ikkala tarafdan 8000 ni ayirish.
1400x-10x^{2}-48000=0
-48000 olish uchun -40000 dan 8000 ni ayirish.
-10x^{2}+1400x-48000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1400±\sqrt{1400^{2}-4\left(-10\right)\left(-48000\right)}}{2\left(-10\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -10 ni a, 1400 ni b va -48000 ni c bilan almashtiring.
x=\frac{-1400±\sqrt{1960000-4\left(-10\right)\left(-48000\right)}}{2\left(-10\right)}
1400 kvadratini chiqarish.
x=\frac{-1400±\sqrt{1960000+40\left(-48000\right)}}{2\left(-10\right)}
-4 ni -10 marotabaga ko'paytirish.
x=\frac{-1400±\sqrt{1960000-1920000}}{2\left(-10\right)}
40 ni -48000 marotabaga ko'paytirish.
x=\frac{-1400±\sqrt{40000}}{2\left(-10\right)}
1960000 ni -1920000 ga qo'shish.
x=\frac{-1400±200}{2\left(-10\right)}
40000 ning kvadrat ildizini chiqarish.
x=\frac{-1400±200}{-20}
2 ni -10 marotabaga ko'paytirish.
x=-\frac{1200}{-20}
x=\frac{-1400±200}{-20} tenglamasini yeching, bunda ± musbat. -1400 ni 200 ga qo'shish.
x=60
-1200 ni -20 ga bo'lish.
x=-\frac{1600}{-20}
x=\frac{-1400±200}{-20} tenglamasini yeching, bunda ± manfiy. -1400 dan 200 ni ayirish.
x=80
-1600 ni -20 ga bo'lish.
x=60 x=80
Tenglama yechildi.
\left(x-40\right)\left(500-\left(10x-500\right)\right)=8000
x-50 ga 10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(x-40\right)\left(500-10x-\left(-500\right)\right)=8000
10x-500 teskarisini topish uchun har birining teskarisini toping.
\left(x-40\right)\left(500-10x+500\right)=8000
-500 ning teskarisi 500 ga teng.
\left(x-40\right)\left(1000-10x\right)=8000
1000 olish uchun 500 va 500'ni qo'shing.
1000x-10x^{2}-40000+400x=8000
x-40 ifodaning har bir elementini 1000-10x ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
1400x-10x^{2}-40000=8000
1400x ni olish uchun 1000x va 400x ni birlashtirish.
1400x-10x^{2}=8000+40000
40000 ni ikki tarafga qo’shing.
1400x-10x^{2}=48000
48000 olish uchun 8000 va 40000'ni qo'shing.
-10x^{2}+1400x=48000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-10x^{2}+1400x}{-10}=\frac{48000}{-10}
Ikki tarafini -10 ga bo‘ling.
x^{2}+\frac{1400}{-10}x=\frac{48000}{-10}
-10 ga bo'lish -10 ga ko'paytirishni bekor qiladi.
x^{2}-140x=\frac{48000}{-10}
1400 ni -10 ga bo'lish.
x^{2}-140x=-4800
48000 ni -10 ga bo'lish.
x^{2}-140x+\left(-70\right)^{2}=-4800+\left(-70\right)^{2}
-140 ni bo‘lish, x shartining koeffitsienti, 2 ga -70 olish uchun. Keyin, -70 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-140x+4900=-4800+4900
-70 kvadratini chiqarish.
x^{2}-140x+4900=100
-4800 ni 4900 ga qo'shish.
\left(x-70\right)^{2}=100
x^{2}-140x+4900 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-70\right)^{2}}=\sqrt{100}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-70=10 x-70=-10
Qisqartirish.
x=80 x=60
70 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}