Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}-19x+12=12
x-4 ga 4x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
4x^{2}-19x+12-12=0
Ikkala tarafdan 12 ni ayirish.
4x^{2}-19x=0
0 olish uchun 12 dan 12 ni ayirish.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -19 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-19\right)±19}{2\times 4}
\left(-19\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{19±19}{2\times 4}
-19 ning teskarisi 19 ga teng.
x=\frac{19±19}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{38}{8}
x=\frac{19±19}{8} tenglamasini yeching, bunda ± musbat. 19 ni 19 ga qo'shish.
x=\frac{19}{4}
\frac{38}{8} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{0}{8}
x=\frac{19±19}{8} tenglamasini yeching, bunda ± manfiy. 19 dan 19 ni ayirish.
x=0
0 ni 8 ga bo'lish.
x=\frac{19}{4} x=0
Tenglama yechildi.
4x^{2}-19x+12=12
x-4 ga 4x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
4x^{2}-19x=12-12
Ikkala tarafdan 12 ni ayirish.
4x^{2}-19x=0
0 olish uchun 12 dan 12 ni ayirish.
\frac{4x^{2}-19x}{4}=\frac{0}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}-\frac{19}{4}x=\frac{0}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{19}{4}x=0
0 ni 4 ga bo'lish.
x^{2}-\frac{19}{4}x+\left(-\frac{19}{8}\right)^{2}=\left(-\frac{19}{8}\right)^{2}
-\frac{19}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{19}{8} olish uchun. Keyin, -\frac{19}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{19}{4}x+\frac{361}{64}=\frac{361}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{19}{8} kvadratini chiqarish.
\left(x-\frac{19}{8}\right)^{2}=\frac{361}{64}
x^{2}-\frac{19}{4}x+\frac{361}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{19}{8}\right)^{2}}=\sqrt{\frac{361}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{19}{8}=\frac{19}{8} x-\frac{19}{8}=-\frac{19}{8}
Qisqartirish.
x=\frac{19}{4} x=0
\frac{19}{8} ni tenglamaning ikkala tarafiga qo'shish.