Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-8x+16-9=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-4\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-8x+7=0
7 olish uchun 16 dan 9 ni ayirish.
a+b=-8 ab=7
Bu tenglamani yechish uchun x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) formulasi yordamida x^{2}-8x+7 ni faktorlang. a va b ni topish uchun yechiladigan tizimni sozlang.
a=-7 b=-1
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. Faqat bundan juftlik tizim yechimidir.
\left(x-7\right)\left(x-1\right)
Faktorlangan \left(x+a\right)\left(x+b\right) ifodani olingan qiymatlar bilan qaytadan yozing.
x=7 x=1
Tenglamani yechish uchun x-7=0 va x-1=0 ni yeching.
x^{2}-8x+16-9=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-4\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-8x+7=0
7 olish uchun 16 dan 9 ni ayirish.
a+b=-8 ab=1\times 7=7
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon x^{2}+ax+bx+7 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
a=-7 b=-1
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. Faqat bundan juftlik tizim yechimidir.
\left(x^{2}-7x\right)+\left(-x+7\right)
x^{2}-8x+7 ni \left(x^{2}-7x\right)+\left(-x+7\right) sifatida qaytadan yozish.
x\left(x-7\right)-\left(x-7\right)
Birinchi guruhda x ni va ikkinchi guruhda -1 ni faktordan chiqaring.
\left(x-7\right)\left(x-1\right)
Distributiv funktsiyasidan foydalangan holda x-7 umumiy terminini chiqaring.
x=7 x=1
Tenglamani yechish uchun x-7=0 va x-1=0 ni yeching.
x^{2}-8x+16-9=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-4\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-8x+7=0
7 olish uchun 16 dan 9 ni ayirish.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -8 ni b va 7 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 7}}{2}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64-28}}{2}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{36}}{2}
64 ni -28 ga qo'shish.
x=\frac{-\left(-8\right)±6}{2}
36 ning kvadrat ildizini chiqarish.
x=\frac{8±6}{2}
-8 ning teskarisi 8 ga teng.
x=\frac{14}{2}
x=\frac{8±6}{2} tenglamasini yeching, bunda ± musbat. 8 ni 6 ga qo'shish.
x=7
14 ni 2 ga bo'lish.
x=\frac{2}{2}
x=\frac{8±6}{2} tenglamasini yeching, bunda ± manfiy. 8 dan 6 ni ayirish.
x=1
2 ni 2 ga bo'lish.
x=7 x=1
Tenglama yechildi.
x^{2}-8x+16-9=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-4\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-8x+7=0
7 olish uchun 16 dan 9 ni ayirish.
x^{2}-8x=-7
Ikkala tarafdan 7 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-8x+\left(-4\right)^{2}=-7+\left(-4\right)^{2}
-8 ni bo‘lish, x shartining koeffitsienti, 2 ga -4 olish uchun. Keyin, -4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-8x+16=-7+16
-4 kvadratini chiqarish.
x^{2}-8x+16=9
-7 ni 16 ga qo'shish.
\left(x-4\right)^{2}=9
x^{2}-8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-4\right)^{2}}=\sqrt{9}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-4=3 x-4=-3
Qisqartirish.
x=7 x=1
4 ni tenglamaning ikkala tarafiga qo'shish.