Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-9=2\times 4
Hisoblang: \left(x-3\right)\left(x+3\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 3 kvadratini chiqarish.
x^{2}-9=8
8 hosil qilish uchun 2 va 4 ni ko'paytirish.
x^{2}=8+9
9 ni ikki tarafga qo’shing.
x^{2}=17
17 olish uchun 8 va 9'ni qo'shing.
x=\sqrt{17} x=-\sqrt{17}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x^{2}-9=2\times 4
Hisoblang: \left(x-3\right)\left(x+3\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 3 kvadratini chiqarish.
x^{2}-9=8
8 hosil qilish uchun 2 va 4 ni ko'paytirish.
x^{2}-9-8=0
Ikkala tarafdan 8 ni ayirish.
x^{2}-17=0
-17 olish uchun -9 dan 8 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-17\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -17 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-17\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{68}}{2}
-4 ni -17 marotabaga ko'paytirish.
x=\frac{0±2\sqrt{17}}{2}
68 ning kvadrat ildizini chiqarish.
x=\sqrt{17}
x=\frac{0±2\sqrt{17}}{2} tenglamasini yeching, bunda ± musbat.
x=-\sqrt{17}
x=\frac{0±2\sqrt{17}}{2} tenglamasini yeching, bunda ± manfiy.
x=\sqrt{17} x=-\sqrt{17}
Tenglama yechildi.