Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4\left(x-3\right)^{2}=x
Tenglamaning ikkala tarafini 4 ga ko'paytirish.
4\left(x^{2}-6x+9\right)=x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-3\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}-24x+36=x
4 ga x^{2}-6x+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}-24x+36-x=0
Ikkala tarafdan x ni ayirish.
4x^{2}-25x+36=0
-25x ni olish uchun -24x va -x ni birlashtirish.
a+b=-25 ab=4\times 36=144
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 4x^{2}+ax+bx+36 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-144 -2,-72 -3,-48 -4,-36 -6,-24 -8,-18 -9,-16 -12,-12
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 144-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-144=-145 -2-72=-74 -3-48=-51 -4-36=-40 -6-24=-30 -8-18=-26 -9-16=-25 -12-12=-24
Har bir juftlik yigʻindisini hisoblang.
a=-16 b=-9
Yechim – -25 yigʻindisini beruvchi juftlik.
\left(4x^{2}-16x\right)+\left(-9x+36\right)
4x^{2}-25x+36 ni \left(4x^{2}-16x\right)+\left(-9x+36\right) sifatida qaytadan yozish.
4x\left(x-4\right)-9\left(x-4\right)
Birinchi guruhda 4x ni va ikkinchi guruhda -9 ni faktordan chiqaring.
\left(x-4\right)\left(4x-9\right)
Distributiv funktsiyasidan foydalangan holda x-4 umumiy terminini chiqaring.
x=4 x=\frac{9}{4}
Tenglamani yechish uchun x-4=0 va 4x-9=0 ni yeching.
4\left(x-3\right)^{2}=x
Tenglamaning ikkala tarafini 4 ga ko'paytirish.
4\left(x^{2}-6x+9\right)=x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-3\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}-24x+36=x
4 ga x^{2}-6x+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}-24x+36-x=0
Ikkala tarafdan x ni ayirish.
4x^{2}-25x+36=0
-25x ni olish uchun -24x va -x ni birlashtirish.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 4\times 36}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -25 ni b va 36 ni c bilan almashtiring.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 4\times 36}}{2\times 4}
-25 kvadratini chiqarish.
x=\frac{-\left(-25\right)±\sqrt{625-16\times 36}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-25\right)±\sqrt{625-576}}{2\times 4}
-16 ni 36 marotabaga ko'paytirish.
x=\frac{-\left(-25\right)±\sqrt{49}}{2\times 4}
625 ni -576 ga qo'shish.
x=\frac{-\left(-25\right)±7}{2\times 4}
49 ning kvadrat ildizini chiqarish.
x=\frac{25±7}{2\times 4}
-25 ning teskarisi 25 ga teng.
x=\frac{25±7}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{32}{8}
x=\frac{25±7}{8} tenglamasini yeching, bunda ± musbat. 25 ni 7 ga qo'shish.
x=4
32 ni 8 ga bo'lish.
x=\frac{18}{8}
x=\frac{25±7}{8} tenglamasini yeching, bunda ± manfiy. 25 dan 7 ni ayirish.
x=\frac{9}{4}
\frac{18}{8} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=4 x=\frac{9}{4}
Tenglama yechildi.
4\left(x-3\right)^{2}=x
Tenglamaning ikkala tarafini 4 ga ko'paytirish.
4\left(x^{2}-6x+9\right)=x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-3\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}-24x+36=x
4 ga x^{2}-6x+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}-24x+36-x=0
Ikkala tarafdan x ni ayirish.
4x^{2}-25x+36=0
-25x ni olish uchun -24x va -x ni birlashtirish.
4x^{2}-25x=-36
Ikkala tarafdan 36 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{4x^{2}-25x}{4}=-\frac{36}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}-\frac{25}{4}x=-\frac{36}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{25}{4}x=-9
-36 ni 4 ga bo'lish.
x^{2}-\frac{25}{4}x+\left(-\frac{25}{8}\right)^{2}=-9+\left(-\frac{25}{8}\right)^{2}
-\frac{25}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{25}{8} olish uchun. Keyin, -\frac{25}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{25}{4}x+\frac{625}{64}=-9+\frac{625}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{25}{8} kvadratini chiqarish.
x^{2}-\frac{25}{4}x+\frac{625}{64}=\frac{49}{64}
-9 ni \frac{625}{64} ga qo'shish.
\left(x-\frac{25}{8}\right)^{2}=\frac{49}{64}
x^{2}-\frac{25}{4}x+\frac{625}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{25}{8}\right)^{2}}=\sqrt{\frac{49}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{25}{8}=\frac{7}{8} x-\frac{25}{8}=-\frac{7}{8}
Qisqartirish.
x=4 x=\frac{9}{4}
\frac{25}{8} ni tenglamaning ikkala tarafiga qo'shish.