x uchun yechish (complex solution)
x=2+i
x=2-i
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-6x+9+\left(x-1\right)^{2}=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-3\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-6x+9+x^{2}-2x+1=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
2x^{2}-6x+9-2x+1=0
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}-8x+9+1=0
-8x ni olish uchun -6x va -2x ni birlashtirish.
2x^{2}-8x+10=0
10 olish uchun 9 va 1'ni qo'shing.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 10}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -8 ni b va 10 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 10}}{2\times 2}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64-8\times 10}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64-80}}{2\times 2}
-8 ni 10 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{-16}}{2\times 2}
64 ni -80 ga qo'shish.
x=\frac{-\left(-8\right)±4i}{2\times 2}
-16 ning kvadrat ildizini chiqarish.
x=\frac{8±4i}{2\times 2}
-8 ning teskarisi 8 ga teng.
x=\frac{8±4i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{8+4i}{4}
x=\frac{8±4i}{4} tenglamasini yeching, bunda ± musbat. 8 ni 4i ga qo'shish.
x=2+i
8+4i ni 4 ga bo'lish.
x=\frac{8-4i}{4}
x=\frac{8±4i}{4} tenglamasini yeching, bunda ± manfiy. 8 dan 4i ni ayirish.
x=2-i
8-4i ni 4 ga bo'lish.
x=2+i x=2-i
Tenglama yechildi.
x^{2}-6x+9+\left(x-1\right)^{2}=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-3\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-6x+9+x^{2}-2x+1=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
2x^{2}-6x+9-2x+1=0
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}-8x+9+1=0
-8x ni olish uchun -6x va -2x ni birlashtirish.
2x^{2}-8x+10=0
10 olish uchun 9 va 1'ni qo'shing.
2x^{2}-8x=-10
Ikkala tarafdan 10 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{2x^{2}-8x}{2}=-\frac{10}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{8}{2}\right)x=-\frac{10}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-4x=-\frac{10}{2}
-8 ni 2 ga bo'lish.
x^{2}-4x=-5
-10 ni 2 ga bo'lish.
x^{2}-4x+\left(-2\right)^{2}=-5+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=-5+4
-2 kvadratini chiqarish.
x^{2}-4x+4=-1
-5 ni 4 ga qo'shish.
\left(x-2\right)^{2}=-1
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-1}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=i x-2=-i
Qisqartirish.
x=2+i x=2-i
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}