Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-6x+9+\left(x-1\right)^{2}=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-3\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-6x+9+x^{2}-2x+1=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
2x^{2}-6x+9-2x+1=0
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}-8x+9+1=0
-8x ni olish uchun -6x va -2x ni birlashtirish.
2x^{2}-8x+10=0
10 olish uchun 9 va 1'ni qo'shing.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 10}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -8 ni b va 10 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 10}}{2\times 2}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64-8\times 10}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64-80}}{2\times 2}
-8 ni 10 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{-16}}{2\times 2}
64 ni -80 ga qo'shish.
x=\frac{-\left(-8\right)±4i}{2\times 2}
-16 ning kvadrat ildizini chiqarish.
x=\frac{8±4i}{2\times 2}
-8 ning teskarisi 8 ga teng.
x=\frac{8±4i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{8+4i}{4}
x=\frac{8±4i}{4} tenglamasini yeching, bunda ± musbat. 8 ni 4i ga qo'shish.
x=2+i
8+4i ni 4 ga bo'lish.
x=\frac{8-4i}{4}
x=\frac{8±4i}{4} tenglamasini yeching, bunda ± manfiy. 8 dan 4i ni ayirish.
x=2-i
8-4i ni 4 ga bo'lish.
x=2+i x=2-i
Tenglama yechildi.
x^{2}-6x+9+\left(x-1\right)^{2}=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-3\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-6x+9+x^{2}-2x+1=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
2x^{2}-6x+9-2x+1=0
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}-8x+9+1=0
-8x ni olish uchun -6x va -2x ni birlashtirish.
2x^{2}-8x+10=0
10 olish uchun 9 va 1'ni qo'shing.
2x^{2}-8x=-10
Ikkala tarafdan 10 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{2x^{2}-8x}{2}=-\frac{10}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{8}{2}\right)x=-\frac{10}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-4x=-\frac{10}{2}
-8 ni 2 ga bo'lish.
x^{2}-4x=-5
-10 ni 2 ga bo'lish.
x^{2}-4x+\left(-2\right)^{2}=-5+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=-5+4
-2 kvadratini chiqarish.
x^{2}-4x+4=-1
-5 ni 4 ga qo'shish.
\left(x-2\right)^{2}=-1
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-1}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=i x-2=-i
Qisqartirish.
x=2+i x=2-i
2 ni tenglamaning ikkala tarafiga qo'shish.