Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-4x+4-9\left(x+1\right)^{2}=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-2\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-4x+4-9\left(x^{2}+2x+1\right)=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-4x+4-9x^{2}-18x-9=0
-9 ga x^{2}+2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-8x^{2}-4x+4-18x-9=0
-8x^{2} ni olish uchun x^{2} va -9x^{2} ni birlashtirish.
-8x^{2}-22x+4-9=0
-22x ni olish uchun -4x va -18x ni birlashtirish.
-8x^{2}-22x-5=0
-5 olish uchun 4 dan 9 ni ayirish.
a+b=-22 ab=-8\left(-5\right)=40
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -8x^{2}+ax+bx-5 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-40 -2,-20 -4,-10 -5,-8
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 40-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-40=-41 -2-20=-22 -4-10=-14 -5-8=-13
Har bir juftlik yigʻindisini hisoblang.
a=-2 b=-20
Yechim – -22 yigʻindisini beruvchi juftlik.
\left(-8x^{2}-2x\right)+\left(-20x-5\right)
-8x^{2}-22x-5 ni \left(-8x^{2}-2x\right)+\left(-20x-5\right) sifatida qaytadan yozish.
2x\left(-4x-1\right)+5\left(-4x-1\right)
Birinchi guruhda 2x ni va ikkinchi guruhda 5 ni faktordan chiqaring.
\left(-4x-1\right)\left(2x+5\right)
Distributiv funktsiyasidan foydalangan holda -4x-1 umumiy terminini chiqaring.
x=-\frac{1}{4} x=-\frac{5}{2}
Tenglamani yechish uchun -4x-1=0 va 2x+5=0 ni yeching.
x^{2}-4x+4-9\left(x+1\right)^{2}=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-2\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-4x+4-9\left(x^{2}+2x+1\right)=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-4x+4-9x^{2}-18x-9=0
-9 ga x^{2}+2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-8x^{2}-4x+4-18x-9=0
-8x^{2} ni olish uchun x^{2} va -9x^{2} ni birlashtirish.
-8x^{2}-22x+4-9=0
-22x ni olish uchun -4x va -18x ni birlashtirish.
-8x^{2}-22x-5=0
-5 olish uchun 4 dan 9 ni ayirish.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\left(-8\right)\left(-5\right)}}{2\left(-8\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -8 ni a, -22 ni b va -5 ni c bilan almashtiring.
x=\frac{-\left(-22\right)±\sqrt{484-4\left(-8\right)\left(-5\right)}}{2\left(-8\right)}
-22 kvadratini chiqarish.
x=\frac{-\left(-22\right)±\sqrt{484+32\left(-5\right)}}{2\left(-8\right)}
-4 ni -8 marotabaga ko'paytirish.
x=\frac{-\left(-22\right)±\sqrt{484-160}}{2\left(-8\right)}
32 ni -5 marotabaga ko'paytirish.
x=\frac{-\left(-22\right)±\sqrt{324}}{2\left(-8\right)}
484 ni -160 ga qo'shish.
x=\frac{-\left(-22\right)±18}{2\left(-8\right)}
324 ning kvadrat ildizini chiqarish.
x=\frac{22±18}{2\left(-8\right)}
-22 ning teskarisi 22 ga teng.
x=\frac{22±18}{-16}
2 ni -8 marotabaga ko'paytirish.
x=\frac{40}{-16}
x=\frac{22±18}{-16} tenglamasini yeching, bunda ± musbat. 22 ni 18 ga qo'shish.
x=-\frac{5}{2}
\frac{40}{-16} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{4}{-16}
x=\frac{22±18}{-16} tenglamasini yeching, bunda ± manfiy. 22 dan 18 ni ayirish.
x=-\frac{1}{4}
\frac{4}{-16} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{5}{2} x=-\frac{1}{4}
Tenglama yechildi.
x^{2}-4x+4-9\left(x+1\right)^{2}=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-2\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-4x+4-9\left(x^{2}+2x+1\right)=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-4x+4-9x^{2}-18x-9=0
-9 ga x^{2}+2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-8x^{2}-4x+4-18x-9=0
-8x^{2} ni olish uchun x^{2} va -9x^{2} ni birlashtirish.
-8x^{2}-22x+4-9=0
-22x ni olish uchun -4x va -18x ni birlashtirish.
-8x^{2}-22x-5=0
-5 olish uchun 4 dan 9 ni ayirish.
-8x^{2}-22x=5
5 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{-8x^{2}-22x}{-8}=\frac{5}{-8}
Ikki tarafini -8 ga bo‘ling.
x^{2}+\left(-\frac{22}{-8}\right)x=\frac{5}{-8}
-8 ga bo'lish -8 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{11}{4}x=\frac{5}{-8}
\frac{-22}{-8} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{11}{4}x=-\frac{5}{8}
5 ni -8 ga bo'lish.
x^{2}+\frac{11}{4}x+\left(\frac{11}{8}\right)^{2}=-\frac{5}{8}+\left(\frac{11}{8}\right)^{2}
\frac{11}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{11}{8} olish uchun. Keyin, \frac{11}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{11}{4}x+\frac{121}{64}=-\frac{5}{8}+\frac{121}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{11}{8} kvadratini chiqarish.
x^{2}+\frac{11}{4}x+\frac{121}{64}=\frac{81}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{5}{8} ni \frac{121}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{11}{8}\right)^{2}=\frac{81}{64}
x^{2}+\frac{11}{4}x+\frac{121}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{11}{8}\right)^{2}}=\sqrt{\frac{81}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{11}{8}=\frac{9}{8} x+\frac{11}{8}=-\frac{9}{8}
Qisqartirish.
x=-\frac{1}{4} x=-\frac{5}{2}
Tenglamaning ikkala tarafidan \frac{11}{8} ni ayirish.