Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-4x+4-4x+2=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-2\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-8x+4+2=0
-8x ni olish uchun -4x va -4x ni birlashtirish.
x^{2}-8x+6=0
6 olish uchun 4 va 2'ni qo'shing.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 6}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -8 ni b va 6 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 6}}{2}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64-24}}{2}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{40}}{2}
64 ni -24 ga qo'shish.
x=\frac{-\left(-8\right)±2\sqrt{10}}{2}
40 ning kvadrat ildizini chiqarish.
x=\frac{8±2\sqrt{10}}{2}
-8 ning teskarisi 8 ga teng.
x=\frac{2\sqrt{10}+8}{2}
x=\frac{8±2\sqrt{10}}{2} tenglamasini yeching, bunda ± musbat. 8 ni 2\sqrt{10} ga qo'shish.
x=\sqrt{10}+4
8+2\sqrt{10} ni 2 ga bo'lish.
x=\frac{8-2\sqrt{10}}{2}
x=\frac{8±2\sqrt{10}}{2} tenglamasini yeching, bunda ± manfiy. 8 dan 2\sqrt{10} ni ayirish.
x=4-\sqrt{10}
8-2\sqrt{10} ni 2 ga bo'lish.
x=\sqrt{10}+4 x=4-\sqrt{10}
Tenglama yechildi.
x^{2}-4x+4-4x+2=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-2\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-8x+4+2=0
-8x ni olish uchun -4x va -4x ni birlashtirish.
x^{2}-8x+6=0
6 olish uchun 4 va 2'ni qo'shing.
x^{2}-8x=-6
Ikkala tarafdan 6 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-8x+\left(-4\right)^{2}=-6+\left(-4\right)^{2}
-8 ni bo‘lish, x shartining koeffitsienti, 2 ga -4 olish uchun. Keyin, -4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-8x+16=-6+16
-4 kvadratini chiqarish.
x^{2}-8x+16=10
-6 ni 16 ga qo'shish.
\left(x-4\right)^{2}=10
x^{2}-8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-4\right)^{2}}=\sqrt{10}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-4=\sqrt{10} x-4=-\sqrt{10}
Qisqartirish.
x=\sqrt{10}+4 x=4-\sqrt{10}
4 ni tenglamaning ikkala tarafiga qo'shish.