x uchun yechish
x = \frac{153}{8} = 19\frac{1}{8} = 19,125
x = \frac{127}{8} = 15\frac{7}{8} = 15,875
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-35x+304=\frac{25}{64}
x-16 ga x-19 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-35x+304-\frac{25}{64}=0
Ikkala tarafdan \frac{25}{64} ni ayirish.
x^{2}-35x+\frac{19431}{64}=0
\frac{19431}{64} olish uchun 304 dan \frac{25}{64} ni ayirish.
x=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}-4\times \frac{19431}{64}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -35 ni b va \frac{19431}{64} ni c bilan almashtiring.
x=\frac{-\left(-35\right)±\sqrt{1225-4\times \frac{19431}{64}}}{2}
-35 kvadratini chiqarish.
x=\frac{-\left(-35\right)±\sqrt{1225-\frac{19431}{16}}}{2}
-4 ni \frac{19431}{64} marotabaga ko'paytirish.
x=\frac{-\left(-35\right)±\sqrt{\frac{169}{16}}}{2}
1225 ni -\frac{19431}{16} ga qo'shish.
x=\frac{-\left(-35\right)±\frac{13}{4}}{2}
\frac{169}{16} ning kvadrat ildizini chiqarish.
x=\frac{35±\frac{13}{4}}{2}
-35 ning teskarisi 35 ga teng.
x=\frac{\frac{153}{4}}{2}
x=\frac{35±\frac{13}{4}}{2} tenglamasini yeching, bunda ± musbat. 35 ni \frac{13}{4} ga qo'shish.
x=\frac{153}{8}
\frac{153}{4} ni 2 ga bo'lish.
x=\frac{\frac{127}{4}}{2}
x=\frac{35±\frac{13}{4}}{2} tenglamasini yeching, bunda ± manfiy. 35 dan \frac{13}{4} ni ayirish.
x=\frac{127}{8}
\frac{127}{4} ni 2 ga bo'lish.
x=\frac{153}{8} x=\frac{127}{8}
Tenglama yechildi.
x^{2}-35x+304=\frac{25}{64}
x-16 ga x-19 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-35x=\frac{25}{64}-304
Ikkala tarafdan 304 ni ayirish.
x^{2}-35x=-\frac{19431}{64}
-\frac{19431}{64} olish uchun \frac{25}{64} dan 304 ni ayirish.
x^{2}-35x+\left(-\frac{35}{2}\right)^{2}=-\frac{19431}{64}+\left(-\frac{35}{2}\right)^{2}
-35 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{35}{2} olish uchun. Keyin, -\frac{35}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-35x+\frac{1225}{4}=-\frac{19431}{64}+\frac{1225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{35}{2} kvadratini chiqarish.
x^{2}-35x+\frac{1225}{4}=\frac{169}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{19431}{64} ni \frac{1225}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{35}{2}\right)^{2}=\frac{169}{64}
x^{2}-35x+\frac{1225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{35}{2}\right)^{2}}=\sqrt{\frac{169}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{35}{2}=\frac{13}{8} x-\frac{35}{2}=-\frac{13}{8}
Qisqartirish.
x=\frac{153}{8} x=\frac{127}{8}
\frac{35}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}