( x - 100 ) [ 300 + ( 200 - x ) ) = 3200
x uchun yechish
x=40\sqrt{23}+300\approx 491,833260933
x=300-40\sqrt{23}\approx 108,166739067
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-100\right)\left(500-x\right)=3200
500 olish uchun 300 va 200'ni qo'shing.
600x-x^{2}-50000=3200
x-100 ga 500-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
600x-x^{2}-50000-3200=0
Ikkala tarafdan 3200 ni ayirish.
600x-x^{2}-53200=0
-53200 olish uchun -50000 dan 3200 ni ayirish.
-x^{2}+600x-53200=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-600±\sqrt{600^{2}-4\left(-1\right)\left(-53200\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 600 ni b va -53200 ni c bilan almashtiring.
x=\frac{-600±\sqrt{360000-4\left(-1\right)\left(-53200\right)}}{2\left(-1\right)}
600 kvadratini chiqarish.
x=\frac{-600±\sqrt{360000+4\left(-53200\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-600±\sqrt{360000-212800}}{2\left(-1\right)}
4 ni -53200 marotabaga ko'paytirish.
x=\frac{-600±\sqrt{147200}}{2\left(-1\right)}
360000 ni -212800 ga qo'shish.
x=\frac{-600±80\sqrt{23}}{2\left(-1\right)}
147200 ning kvadrat ildizini chiqarish.
x=\frac{-600±80\sqrt{23}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{80\sqrt{23}-600}{-2}
x=\frac{-600±80\sqrt{23}}{-2} tenglamasini yeching, bunda ± musbat. -600 ni 80\sqrt{23} ga qo'shish.
x=300-40\sqrt{23}
-600+80\sqrt{23} ni -2 ga bo'lish.
x=\frac{-80\sqrt{23}-600}{-2}
x=\frac{-600±80\sqrt{23}}{-2} tenglamasini yeching, bunda ± manfiy. -600 dan 80\sqrt{23} ni ayirish.
x=40\sqrt{23}+300
-600-80\sqrt{23} ni -2 ga bo'lish.
x=300-40\sqrt{23} x=40\sqrt{23}+300
Tenglama yechildi.
\left(x-100\right)\left(500-x\right)=3200
500 olish uchun 300 va 200'ni qo'shing.
600x-x^{2}-50000=3200
x-100 ga 500-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
600x-x^{2}=3200+50000
50000 ni ikki tarafga qo’shing.
600x-x^{2}=53200
53200 olish uchun 3200 va 50000'ni qo'shing.
-x^{2}+600x=53200
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+600x}{-1}=\frac{53200}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{600}{-1}x=\frac{53200}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-600x=\frac{53200}{-1}
600 ni -1 ga bo'lish.
x^{2}-600x=-53200
53200 ni -1 ga bo'lish.
x^{2}-600x+\left(-300\right)^{2}=-53200+\left(-300\right)^{2}
-600 ni bo‘lish, x shartining koeffitsienti, 2 ga -300 olish uchun. Keyin, -300 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-600x+90000=-53200+90000
-300 kvadratini chiqarish.
x^{2}-600x+90000=36800
-53200 ni 90000 ga qo'shish.
\left(x-300\right)^{2}=36800
x^{2}-600x+90000 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-300\right)^{2}}=\sqrt{36800}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-300=40\sqrt{23} x-300=-40\sqrt{23}
Qisqartirish.
x=40\sqrt{23}+300 x=300-40\sqrt{23}
300 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}