Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-2x^{2}+100x-800=450
x-10 ga -2x+80 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-2x^{2}+100x-800-450=0
Ikkala tarafdan 450 ni ayirish.
-2x^{2}+100x-1250=0
-1250 olish uchun -800 dan 450 ni ayirish.
x=\frac{-100±\sqrt{100^{2}-4\left(-2\right)\left(-1250\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 100 ni b va -1250 ni c bilan almashtiring.
x=\frac{-100±\sqrt{10000-4\left(-2\right)\left(-1250\right)}}{2\left(-2\right)}
100 kvadratini chiqarish.
x=\frac{-100±\sqrt{10000+8\left(-1250\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-100±\sqrt{10000-10000}}{2\left(-2\right)}
8 ni -1250 marotabaga ko'paytirish.
x=\frac{-100±\sqrt{0}}{2\left(-2\right)}
10000 ni -10000 ga qo'shish.
x=-\frac{100}{2\left(-2\right)}
0 ning kvadrat ildizini chiqarish.
x=-\frac{100}{-4}
2 ni -2 marotabaga ko'paytirish.
x=25
-100 ni -4 ga bo'lish.
-2x^{2}+100x-800=450
x-10 ga -2x+80 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-2x^{2}+100x=450+800
800 ni ikki tarafga qo’shing.
-2x^{2}+100x=1250
1250 olish uchun 450 va 800'ni qo'shing.
\frac{-2x^{2}+100x}{-2}=\frac{1250}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{100}{-2}x=\frac{1250}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-50x=\frac{1250}{-2}
100 ni -2 ga bo'lish.
x^{2}-50x=-625
1250 ni -2 ga bo'lish.
x^{2}-50x+\left(-25\right)^{2}=-625+\left(-25\right)^{2}
-50 ni bo‘lish, x shartining koeffitsienti, 2 ga -25 olish uchun. Keyin, -25 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-50x+625=-625+625
-25 kvadratini chiqarish.
x^{2}-50x+625=0
-625 ni 625 ga qo'shish.
\left(x-25\right)^{2}=0
x^{2}-50x+625 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-25\right)^{2}}=\sqrt{0}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-25=0 x-25=0
Qisqartirish.
x=25 x=25
25 ni tenglamaning ikkala tarafiga qo'shish.
x=25
Tenglama yechildi. Yechimlar bir xil.