x uchun yechish
x\geq -3
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{3}-1-9-2x\leq \left(x-1\right)^{3}+x\left(3x-2\right)
x-1 ga x^{2}+x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-10-2x\leq \left(x-1\right)^{3}+x\left(3x-2\right)
-10 olish uchun -1 dan 9 ni ayirish.
x^{3}-10-2x\leq x^{3}-3x^{2}+3x-1+x\left(3x-2\right)
\left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} binom teoremasini \left(x-1\right)^{3} kengaytirilishi uchun ishlating.
x^{3}-10-2x\leq x^{3}-3x^{2}+3x-1+3x^{2}-2x
x ga 3x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{3}-10-2x\leq x^{3}+3x-1-2x
0 ni olish uchun -3x^{2} va 3x^{2} ni birlashtirish.
x^{3}-10-2x\leq x^{3}+x-1
x ni olish uchun 3x va -2x ni birlashtirish.
x^{3}-10-2x-x^{3}\leq x-1
Ikkala tarafdan x^{3} ni ayirish.
-10-2x\leq x-1
0 ni olish uchun x^{3} va -x^{3} ni birlashtirish.
-10-2x-x\leq -1
Ikkala tarafdan x ni ayirish.
-10-3x\leq -1
-3x ni olish uchun -2x va -x ni birlashtirish.
-3x\leq -1+10
10 ni ikki tarafga qo’shing.
-3x\leq 9
9 olish uchun -1 va 10'ni qo'shing.
x\geq \frac{9}{-3}
Ikki tarafini -3 ga bo‘ling. -3 manfiy boʻlgani uchun tengsizlikning yo‘nalishi o‘zgaradi.
x\geq -3
-3 ni olish uchun 9 ni -3 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}