x uchun yechish
x=-3
x=2
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+x-2+3x=4\left(x-2\right)-\left(x-12\right)
x-1 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+4x-2=4\left(x-2\right)-\left(x-12\right)
4x ni olish uchun x va 3x ni birlashtirish.
x^{2}+4x-2=4x-8-\left(x-12\right)
4 ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+4x-2=4x-8-x+12
x-12 teskarisini topish uchun har birining teskarisini toping.
x^{2}+4x-2=3x-8+12
3x ni olish uchun 4x va -x ni birlashtirish.
x^{2}+4x-2=3x+4
4 olish uchun -8 va 12'ni qo'shing.
x^{2}+4x-2-3x=4
Ikkala tarafdan 3x ni ayirish.
x^{2}+x-2=4
x ni olish uchun 4x va -3x ni birlashtirish.
x^{2}+x-2-4=0
Ikkala tarafdan 4 ni ayirish.
x^{2}+x-6=0
-6 olish uchun -2 dan 4 ni ayirish.
x=\frac{-1±\sqrt{1^{2}-4\left(-6\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 1 ni b va -6 ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\left(-6\right)}}{2}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1+24}}{2}
-4 ni -6 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{25}}{2}
1 ni 24 ga qo'shish.
x=\frac{-1±5}{2}
25 ning kvadrat ildizini chiqarish.
x=\frac{4}{2}
x=\frac{-1±5}{2} tenglamasini yeching, bunda ± musbat. -1 ni 5 ga qo'shish.
x=2
4 ni 2 ga bo'lish.
x=-\frac{6}{2}
x=\frac{-1±5}{2} tenglamasini yeching, bunda ± manfiy. -1 dan 5 ni ayirish.
x=-3
-6 ni 2 ga bo'lish.
x=2 x=-3
Tenglama yechildi.
x^{2}+x-2+3x=4\left(x-2\right)-\left(x-12\right)
x-1 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+4x-2=4\left(x-2\right)-\left(x-12\right)
4x ni olish uchun x va 3x ni birlashtirish.
x^{2}+4x-2=4x-8-\left(x-12\right)
4 ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+4x-2=4x-8-x+12
x-12 teskarisini topish uchun har birining teskarisini toping.
x^{2}+4x-2=3x-8+12
3x ni olish uchun 4x va -x ni birlashtirish.
x^{2}+4x-2=3x+4
4 olish uchun -8 va 12'ni qo'shing.
x^{2}+4x-2-3x=4
Ikkala tarafdan 3x ni ayirish.
x^{2}+x-2=4
x ni olish uchun 4x va -3x ni birlashtirish.
x^{2}+x=4+2
2 ni ikki tarafga qo’shing.
x^{2}+x=6
6 olish uchun 4 va 2'ni qo'shing.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=6+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=\frac{25}{4}
6 ni \frac{1}{4} ga qo'shish.
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{4}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{5}{2} x+\frac{1}{2}=-\frac{5}{2}
Qisqartirish.
x=2 x=-3
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}