x uchun yechish
x=-2
x=6
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{3}-3x^{2}+3x-1=x^{2}\left(x-1\right)-\left(x+3\right)\left(x-2\right)-19
\left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} binom teoremasini \left(x-1\right)^{3} kengaytirilishi uchun ishlating.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}-\left(x+3\right)\left(x-2\right)-19
x^{2} ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}-\left(x^{2}+x-6\right)-19
x+3 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}-x^{2}-x+6-19
x^{2}+x-6 teskarisini topish uchun har birining teskarisini toping.
x^{3}-3x^{2}+3x-1=x^{3}-2x^{2}-x+6-19
-2x^{2} ni olish uchun -x^{2} va -x^{2} ni birlashtirish.
x^{3}-3x^{2}+3x-1=x^{3}-2x^{2}-x-13
-13 olish uchun 6 dan 19 ni ayirish.
x^{3}-3x^{2}+3x-1-x^{3}=-2x^{2}-x-13
Ikkala tarafdan x^{3} ni ayirish.
-3x^{2}+3x-1=-2x^{2}-x-13
0 ni olish uchun x^{3} va -x^{3} ni birlashtirish.
-3x^{2}+3x-1+2x^{2}=-x-13
2x^{2} ni ikki tarafga qo’shing.
-x^{2}+3x-1=-x-13
-x^{2} ni olish uchun -3x^{2} va 2x^{2} ni birlashtirish.
-x^{2}+3x-1+x=-13
x ni ikki tarafga qo’shing.
-x^{2}+4x-1=-13
4x ni olish uchun 3x va x ni birlashtirish.
-x^{2}+4x-1+13=0
13 ni ikki tarafga qo’shing.
-x^{2}+4x+12=0
12 olish uchun -1 va 13'ni qo'shing.
a+b=4 ab=-12=-12
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -x^{2}+ax+bx+12 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,12 -2,6 -3,4
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -12-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+12=11 -2+6=4 -3+4=1
Har bir juftlik yigʻindisini hisoblang.
a=6 b=-2
Yechim – 4 yigʻindisini beruvchi juftlik.
\left(-x^{2}+6x\right)+\left(-2x+12\right)
-x^{2}+4x+12 ni \left(-x^{2}+6x\right)+\left(-2x+12\right) sifatida qaytadan yozish.
-x\left(x-6\right)-2\left(x-6\right)
Birinchi guruhda -x ni va ikkinchi guruhda -2 ni faktordan chiqaring.
\left(x-6\right)\left(-x-2\right)
Distributiv funktsiyasidan foydalangan holda x-6 umumiy terminini chiqaring.
x=6 x=-2
Tenglamani yechish uchun x-6=0 va -x-2=0 ni yeching.
x^{3}-3x^{2}+3x-1=x^{2}\left(x-1\right)-\left(x+3\right)\left(x-2\right)-19
\left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} binom teoremasini \left(x-1\right)^{3} kengaytirilishi uchun ishlating.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}-\left(x+3\right)\left(x-2\right)-19
x^{2} ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}-\left(x^{2}+x-6\right)-19
x+3 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}-x^{2}-x+6-19
x^{2}+x-6 teskarisini topish uchun har birining teskarisini toping.
x^{3}-3x^{2}+3x-1=x^{3}-2x^{2}-x+6-19
-2x^{2} ni olish uchun -x^{2} va -x^{2} ni birlashtirish.
x^{3}-3x^{2}+3x-1=x^{3}-2x^{2}-x-13
-13 olish uchun 6 dan 19 ni ayirish.
x^{3}-3x^{2}+3x-1-x^{3}=-2x^{2}-x-13
Ikkala tarafdan x^{3} ni ayirish.
-3x^{2}+3x-1=-2x^{2}-x-13
0 ni olish uchun x^{3} va -x^{3} ni birlashtirish.
-3x^{2}+3x-1+2x^{2}=-x-13
2x^{2} ni ikki tarafga qo’shing.
-x^{2}+3x-1=-x-13
-x^{2} ni olish uchun -3x^{2} va 2x^{2} ni birlashtirish.
-x^{2}+3x-1+x=-13
x ni ikki tarafga qo’shing.
-x^{2}+4x-1=-13
4x ni olish uchun 3x va x ni birlashtirish.
-x^{2}+4x-1+13=0
13 ni ikki tarafga qo’shing.
-x^{2}+4x+12=0
12 olish uchun -1 va 13'ni qo'shing.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\times 12}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 4 ni b va 12 ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\left(-1\right)\times 12}}{2\left(-1\right)}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16+4\times 12}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{16+48}}{2\left(-1\right)}
4 ni 12 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{64}}{2\left(-1\right)}
16 ni 48 ga qo'shish.
x=\frac{-4±8}{2\left(-1\right)}
64 ning kvadrat ildizini chiqarish.
x=\frac{-4±8}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{4}{-2}
x=\frac{-4±8}{-2} tenglamasini yeching, bunda ± musbat. -4 ni 8 ga qo'shish.
x=-2
4 ni -2 ga bo'lish.
x=-\frac{12}{-2}
x=\frac{-4±8}{-2} tenglamasini yeching, bunda ± manfiy. -4 dan 8 ni ayirish.
x=6
-12 ni -2 ga bo'lish.
x=-2 x=6
Tenglama yechildi.
x^{3}-3x^{2}+3x-1=x^{2}\left(x-1\right)-\left(x+3\right)\left(x-2\right)-19
\left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} binom teoremasini \left(x-1\right)^{3} kengaytirilishi uchun ishlating.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}-\left(x+3\right)\left(x-2\right)-19
x^{2} ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}-\left(x^{2}+x-6\right)-19
x+3 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}-x^{2}-x+6-19
x^{2}+x-6 teskarisini topish uchun har birining teskarisini toping.
x^{3}-3x^{2}+3x-1=x^{3}-2x^{2}-x+6-19
-2x^{2} ni olish uchun -x^{2} va -x^{2} ni birlashtirish.
x^{3}-3x^{2}+3x-1=x^{3}-2x^{2}-x-13
-13 olish uchun 6 dan 19 ni ayirish.
x^{3}-3x^{2}+3x-1-x^{3}=-2x^{2}-x-13
Ikkala tarafdan x^{3} ni ayirish.
-3x^{2}+3x-1=-2x^{2}-x-13
0 ni olish uchun x^{3} va -x^{3} ni birlashtirish.
-3x^{2}+3x-1+2x^{2}=-x-13
2x^{2} ni ikki tarafga qo’shing.
-x^{2}+3x-1=-x-13
-x^{2} ni olish uchun -3x^{2} va 2x^{2} ni birlashtirish.
-x^{2}+3x-1+x=-13
x ni ikki tarafga qo’shing.
-x^{2}+4x-1=-13
4x ni olish uchun 3x va x ni birlashtirish.
-x^{2}+4x=-13+1
1 ni ikki tarafga qo’shing.
-x^{2}+4x=-12
-12 olish uchun -13 va 1'ni qo'shing.
\frac{-x^{2}+4x}{-1}=-\frac{12}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{4}{-1}x=-\frac{12}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-4x=-\frac{12}{-1}
4 ni -1 ga bo'lish.
x^{2}-4x=12
-12 ni -1 ga bo'lish.
x^{2}-4x+\left(-2\right)^{2}=12+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=12+4
-2 kvadratini chiqarish.
x^{2}-4x+4=16
12 ni 4 ga qo'shish.
\left(x-2\right)^{2}=16
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{16}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=4 x-2=-4
Qisqartirish.
x=6 x=-2
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}