Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-2x+1=16x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-2x+1-16x=0
Ikkala tarafdan 16x ni ayirish.
x^{2}-18x+1=0
-18x ni olish uchun -2x va -16x ni birlashtirish.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -18 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-18\right)±\sqrt{324-4}}{2}
-18 kvadratini chiqarish.
x=\frac{-\left(-18\right)±\sqrt{320}}{2}
324 ni -4 ga qo'shish.
x=\frac{-\left(-18\right)±8\sqrt{5}}{2}
320 ning kvadrat ildizini chiqarish.
x=\frac{18±8\sqrt{5}}{2}
-18 ning teskarisi 18 ga teng.
x=\frac{8\sqrt{5}+18}{2}
x=\frac{18±8\sqrt{5}}{2} tenglamasini yeching, bunda ± musbat. 18 ni 8\sqrt{5} ga qo'shish.
x=4\sqrt{5}+9
18+8\sqrt{5} ni 2 ga bo'lish.
x=\frac{18-8\sqrt{5}}{2}
x=\frac{18±8\sqrt{5}}{2} tenglamasini yeching, bunda ± manfiy. 18 dan 8\sqrt{5} ni ayirish.
x=9-4\sqrt{5}
18-8\sqrt{5} ni 2 ga bo'lish.
x=4\sqrt{5}+9 x=9-4\sqrt{5}
Tenglama yechildi.
x^{2}-2x+1=16x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-2x+1-16x=0
Ikkala tarafdan 16x ni ayirish.
x^{2}-18x+1=0
-18x ni olish uchun -2x va -16x ni birlashtirish.
x^{2}-18x=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-18x+\left(-9\right)^{2}=-1+\left(-9\right)^{2}
-18 ni bo‘lish, x shartining koeffitsienti, 2 ga -9 olish uchun. Keyin, -9 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-18x+81=-1+81
-9 kvadratini chiqarish.
x^{2}-18x+81=80
-1 ni 81 ga qo'shish.
\left(x-9\right)^{2}=80
x^{2}-18x+81 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-9\right)^{2}}=\sqrt{80}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-9=4\sqrt{5} x-9=-4\sqrt{5}
Qisqartirish.
x=4\sqrt{5}+9 x=9-4\sqrt{5}
9 ni tenglamaning ikkala tarafiga qo'shish.