x uchun yechish
x = -\frac{11}{5} = -2\frac{1}{5} = -2,2
x=1
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-2x+1+\left(2x+2\right)^{2}=16
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-2x+1+4x^{2}+8x+4=16
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+2\right)^{2} kengaytirilishi uchun ishlating.
5x^{2}-2x+1+8x+4=16
5x^{2} ni olish uchun x^{2} va 4x^{2} ni birlashtirish.
5x^{2}+6x+1+4=16
6x ni olish uchun -2x va 8x ni birlashtirish.
5x^{2}+6x+5=16
5 olish uchun 1 va 4'ni qo'shing.
5x^{2}+6x+5-16=0
Ikkala tarafdan 16 ni ayirish.
5x^{2}+6x-11=0
-11 olish uchun 5 dan 16 ni ayirish.
a+b=6 ab=5\left(-11\right)=-55
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 5x^{2}+ax+bx-11 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,55 -5,11
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -55-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+55=54 -5+11=6
Har bir juftlik yigʻindisini hisoblang.
a=-5 b=11
Yechim – 6 yigʻindisini beruvchi juftlik.
\left(5x^{2}-5x\right)+\left(11x-11\right)
5x^{2}+6x-11 ni \left(5x^{2}-5x\right)+\left(11x-11\right) sifatida qaytadan yozish.
5x\left(x-1\right)+11\left(x-1\right)
Birinchi guruhda 5x ni va ikkinchi guruhda 11 ni faktordan chiqaring.
\left(x-1\right)\left(5x+11\right)
Distributiv funktsiyasidan foydalangan holda x-1 umumiy terminini chiqaring.
x=1 x=-\frac{11}{5}
Tenglamani yechish uchun x-1=0 va 5x+11=0 ni yeching.
x^{2}-2x+1+\left(2x+2\right)^{2}=16
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-2x+1+4x^{2}+8x+4=16
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+2\right)^{2} kengaytirilishi uchun ishlating.
5x^{2}-2x+1+8x+4=16
5x^{2} ni olish uchun x^{2} va 4x^{2} ni birlashtirish.
5x^{2}+6x+1+4=16
6x ni olish uchun -2x va 8x ni birlashtirish.
5x^{2}+6x+5=16
5 olish uchun 1 va 4'ni qo'shing.
5x^{2}+6x+5-16=0
Ikkala tarafdan 16 ni ayirish.
5x^{2}+6x-11=0
-11 olish uchun 5 dan 16 ni ayirish.
x=\frac{-6±\sqrt{6^{2}-4\times 5\left(-11\right)}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 6 ni b va -11 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\times 5\left(-11\right)}}{2\times 5}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36-20\left(-11\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{36+220}}{2\times 5}
-20 ni -11 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{256}}{2\times 5}
36 ni 220 ga qo'shish.
x=\frac{-6±16}{2\times 5}
256 ning kvadrat ildizini chiqarish.
x=\frac{-6±16}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{10}{10}
x=\frac{-6±16}{10} tenglamasini yeching, bunda ± musbat. -6 ni 16 ga qo'shish.
x=1
10 ni 10 ga bo'lish.
x=-\frac{22}{10}
x=\frac{-6±16}{10} tenglamasini yeching, bunda ± manfiy. -6 dan 16 ni ayirish.
x=-\frac{11}{5}
\frac{-22}{10} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=1 x=-\frac{11}{5}
Tenglama yechildi.
x^{2}-2x+1+\left(2x+2\right)^{2}=16
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-2x+1+4x^{2}+8x+4=16
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+2\right)^{2} kengaytirilishi uchun ishlating.
5x^{2}-2x+1+8x+4=16
5x^{2} ni olish uchun x^{2} va 4x^{2} ni birlashtirish.
5x^{2}+6x+1+4=16
6x ni olish uchun -2x va 8x ni birlashtirish.
5x^{2}+6x+5=16
5 olish uchun 1 va 4'ni qo'shing.
5x^{2}+6x=16-5
Ikkala tarafdan 5 ni ayirish.
5x^{2}+6x=11
11 olish uchun 16 dan 5 ni ayirish.
\frac{5x^{2}+6x}{5}=\frac{11}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\frac{6}{5}x=\frac{11}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=\frac{11}{5}+\left(\frac{3}{5}\right)^{2}
\frac{6}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{5} olish uchun. Keyin, \frac{3}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{11}{5}+\frac{9}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{5} kvadratini chiqarish.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{64}{25}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{11}{5} ni \frac{9}{25} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{3}{5}\right)^{2}=\frac{64}{25}
x^{2}+\frac{6}{5}x+\frac{9}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{\frac{64}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{5}=\frac{8}{5} x+\frac{3}{5}=-\frac{8}{5}
Qisqartirish.
x=1 x=-\frac{11}{5}
Tenglamaning ikkala tarafidan \frac{3}{5} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}