x uchun yechish
x = \frac{\sqrt{10} + 4}{3} \approx 2,387425887
x=\frac{4-\sqrt{10}}{3}\approx 0,27924078
Grafik
Baham ko'rish
Klipbordga nusxa olish
x-3x^{2}=-7x+2
Ikkala tarafdan 3x^{2} ni ayirish.
x-3x^{2}+7x=2
7x ni ikki tarafga qo’shing.
8x-3x^{2}=2
8x ni olish uchun x va 7x ni birlashtirish.
8x-3x^{2}-2=0
Ikkala tarafdan 2 ni ayirish.
-3x^{2}+8x-2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{8^{2}-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 8 ni b va -2 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64+12\left(-2\right)}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{64-24}}{2\left(-3\right)}
12 ni -2 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{40}}{2\left(-3\right)}
64 ni -24 ga qo'shish.
x=\frac{-8±2\sqrt{10}}{2\left(-3\right)}
40 ning kvadrat ildizini chiqarish.
x=\frac{-8±2\sqrt{10}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{2\sqrt{10}-8}{-6}
x=\frac{-8±2\sqrt{10}}{-6} tenglamasini yeching, bunda ± musbat. -8 ni 2\sqrt{10} ga qo'shish.
x=\frac{4-\sqrt{10}}{3}
-8+2\sqrt{10} ni -6 ga bo'lish.
x=\frac{-2\sqrt{10}-8}{-6}
x=\frac{-8±2\sqrt{10}}{-6} tenglamasini yeching, bunda ± manfiy. -8 dan 2\sqrt{10} ni ayirish.
x=\frac{\sqrt{10}+4}{3}
-8-2\sqrt{10} ni -6 ga bo'lish.
x=\frac{4-\sqrt{10}}{3} x=\frac{\sqrt{10}+4}{3}
Tenglama yechildi.
x-3x^{2}=-7x+2
Ikkala tarafdan 3x^{2} ni ayirish.
x-3x^{2}+7x=2
7x ni ikki tarafga qo’shing.
8x-3x^{2}=2
8x ni olish uchun x va 7x ni birlashtirish.
-3x^{2}+8x=2
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-3x^{2}+8x}{-3}=\frac{2}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\frac{8}{-3}x=\frac{2}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{8}{3}x=\frac{2}{-3}
8 ni -3 ga bo'lish.
x^{2}-\frac{8}{3}x=-\frac{2}{3}
2 ni -3 ga bo'lish.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=-\frac{2}{3}+\left(-\frac{4}{3}\right)^{2}
-\frac{8}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{4}{3} olish uchun. Keyin, -\frac{4}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{8}{3}x+\frac{16}{9}=-\frac{2}{3}+\frac{16}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{4}{3} kvadratini chiqarish.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{10}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{2}{3} ni \frac{16}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{4}{3}\right)^{2}=\frac{10}{9}
x^{2}-\frac{8}{3}x+\frac{16}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{\frac{10}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{4}{3}=\frac{\sqrt{10}}{3} x-\frac{4}{3}=-\frac{\sqrt{10}}{3}
Qisqartirish.
x=\frac{\sqrt{10}+4}{3} x=\frac{4-\sqrt{10}}{3}
\frac{4}{3} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}