x uchun yechish
x = \frac{\sqrt{313} - 5}{6} \approx 2,115301002
x=\frac{-\sqrt{313}-5}{6}\approx -3,781967669
Grafik
Baham ko'rish
Klipbordga nusxa olish
x-3x^{2}=6x-24
Ikkala tarafdan 3x^{2} ni ayirish.
x-3x^{2}-6x=-24
Ikkala tarafdan 6x ni ayirish.
-5x-3x^{2}=-24
-5x ni olish uchun x va -6x ni birlashtirish.
-5x-3x^{2}+24=0
24 ni ikki tarafga qo’shing.
-3x^{2}-5x+24=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-3\right)\times 24}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, -5 ni b va 24 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-3\right)\times 24}}{2\left(-3\right)}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25+12\times 24}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{25+288}}{2\left(-3\right)}
12 ni 24 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{313}}{2\left(-3\right)}
25 ni 288 ga qo'shish.
x=\frac{5±\sqrt{313}}{2\left(-3\right)}
-5 ning teskarisi 5 ga teng.
x=\frac{5±\sqrt{313}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{\sqrt{313}+5}{-6}
x=\frac{5±\sqrt{313}}{-6} tenglamasini yeching, bunda ± musbat. 5 ni \sqrt{313} ga qo'shish.
x=\frac{-\sqrt{313}-5}{6}
5+\sqrt{313} ni -6 ga bo'lish.
x=\frac{5-\sqrt{313}}{-6}
x=\frac{5±\sqrt{313}}{-6} tenglamasini yeching, bunda ± manfiy. 5 dan \sqrt{313} ni ayirish.
x=\frac{\sqrt{313}-5}{6}
5-\sqrt{313} ni -6 ga bo'lish.
x=\frac{-\sqrt{313}-5}{6} x=\frac{\sqrt{313}-5}{6}
Tenglama yechildi.
x-3x^{2}=6x-24
Ikkala tarafdan 3x^{2} ni ayirish.
x-3x^{2}-6x=-24
Ikkala tarafdan 6x ni ayirish.
-5x-3x^{2}=-24
-5x ni olish uchun x va -6x ni birlashtirish.
-3x^{2}-5x=-24
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-3x^{2}-5x}{-3}=-\frac{24}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\left(-\frac{5}{-3}\right)x=-\frac{24}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{5}{3}x=-\frac{24}{-3}
-5 ni -3 ga bo'lish.
x^{2}+\frac{5}{3}x=8
-24 ni -3 ga bo'lish.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=8+\left(\frac{5}{6}\right)^{2}
\frac{5}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{6} olish uchun. Keyin, \frac{5}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{5}{3}x+\frac{25}{36}=8+\frac{25}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{6} kvadratini chiqarish.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{313}{36}
8 ni \frac{25}{36} ga qo'shish.
\left(x+\frac{5}{6}\right)^{2}=\frac{313}{36}
x^{2}+\frac{5}{3}x+\frac{25}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{313}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{6}=\frac{\sqrt{313}}{6} x+\frac{5}{6}=-\frac{\sqrt{313}}{6}
Qisqartirish.
x=\frac{\sqrt{313}-5}{6} x=\frac{-\sqrt{313}-5}{6}
Tenglamaning ikkala tarafidan \frac{5}{6} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}