Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x=\left(3x-15\right)\left(x+3\right)
3 ga x-5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x=3x^{2}-6x-45
3x-15 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x-3x^{2}=-6x-45
Ikkala tarafdan 3x^{2} ni ayirish.
x-3x^{2}+6x=-45
6x ni ikki tarafga qo’shing.
7x-3x^{2}=-45
7x ni olish uchun x va 6x ni birlashtirish.
7x-3x^{2}+45=0
45 ni ikki tarafga qo’shing.
-3x^{2}+7x+45=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-7±\sqrt{7^{2}-4\left(-3\right)\times 45}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 7 ni b va 45 ni c bilan almashtiring.
x=\frac{-7±\sqrt{49-4\left(-3\right)\times 45}}{2\left(-3\right)}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49+12\times 45}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{49+540}}{2\left(-3\right)}
12 ni 45 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{589}}{2\left(-3\right)}
49 ni 540 ga qo'shish.
x=\frac{-7±\sqrt{589}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{\sqrt{589}-7}{-6}
x=\frac{-7±\sqrt{589}}{-6} tenglamasini yeching, bunda ± musbat. -7 ni \sqrt{589} ga qo'shish.
x=\frac{7-\sqrt{589}}{6}
-7+\sqrt{589} ni -6 ga bo'lish.
x=\frac{-\sqrt{589}-7}{-6}
x=\frac{-7±\sqrt{589}}{-6} tenglamasini yeching, bunda ± manfiy. -7 dan \sqrt{589} ni ayirish.
x=\frac{\sqrt{589}+7}{6}
-7-\sqrt{589} ni -6 ga bo'lish.
x=\frac{7-\sqrt{589}}{6} x=\frac{\sqrt{589}+7}{6}
Tenglama yechildi.
x=\left(3x-15\right)\left(x+3\right)
3 ga x-5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x=3x^{2}-6x-45
3x-15 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x-3x^{2}=-6x-45
Ikkala tarafdan 3x^{2} ni ayirish.
x-3x^{2}+6x=-45
6x ni ikki tarafga qo’shing.
7x-3x^{2}=-45
7x ni olish uchun x va 6x ni birlashtirish.
-3x^{2}+7x=-45
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-3x^{2}+7x}{-3}=-\frac{45}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\frac{7}{-3}x=-\frac{45}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{7}{3}x=-\frac{45}{-3}
7 ni -3 ga bo'lish.
x^{2}-\frac{7}{3}x=15
-45 ni -3 ga bo'lish.
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=15+\left(-\frac{7}{6}\right)^{2}
-\frac{7}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{6} olish uchun. Keyin, -\frac{7}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{7}{3}x+\frac{49}{36}=15+\frac{49}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{6} kvadratini chiqarish.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{589}{36}
15 ni \frac{49}{36} ga qo'shish.
\left(x-\frac{7}{6}\right)^{2}=\frac{589}{36}
x^{2}-\frac{7}{3}x+\frac{49}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{\frac{589}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{6}=\frac{\sqrt{589}}{6} x-\frac{7}{6}=-\frac{\sqrt{589}}{6}
Qisqartirish.
x=\frac{\sqrt{589}+7}{6} x=\frac{7-\sqrt{589}}{6}
\frac{7}{6} ni tenglamaning ikkala tarafiga qo'shish.