x uchun yechish (complex solution)
x=\frac{1+\sqrt{3}i}{2}\approx 0,5+0,866025404i
Grafik
Viktorina
Algebra
( x ) = \sqrt { ( x - 1 ) }
Baham ko'rish
Klipbordga nusxa olish
x^{2}=\left(\sqrt{x-1}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x^{2}=x-1
2 daraja ko‘rsatkichini \sqrt{x-1} ga hisoblang va x-1 ni qiymatni oling.
x^{2}-x=-1
Ikkala tarafdan x ni ayirish.
x^{2}-x+1=0
1 ni ikki tarafga qo’shing.
x=\frac{-\left(-1\right)±\sqrt{1-4}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -1 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{-3}}{2}
1 ni -4 ga qo'shish.
x=\frac{-\left(-1\right)±\sqrt{3}i}{2}
-3 ning kvadrat ildizini chiqarish.
x=\frac{1±\sqrt{3}i}{2}
-1 ning teskarisi 1 ga teng.
x=\frac{1+\sqrt{3}i}{2}
x=\frac{1±\sqrt{3}i}{2} tenglamasini yeching, bunda ± musbat. 1 ni i\sqrt{3} ga qo'shish.
x=\frac{-\sqrt{3}i+1}{2}
x=\frac{1±\sqrt{3}i}{2} tenglamasini yeching, bunda ± manfiy. 1 dan i\sqrt{3} ni ayirish.
x=\frac{1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+1}{2}
Tenglama yechildi.
\frac{1+\sqrt{3}i}{2}=\sqrt{\frac{1+\sqrt{3}i}{2}-1}
x=\sqrt{x-1} tenglamasida x uchun \frac{1+\sqrt{3}i}{2} ni almashtiring.
\frac{1}{2}+\frac{1}{2}i\times 3^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}i\times 3^{\frac{1}{2}}
Qisqartirish. x=\frac{1+\sqrt{3}i}{2} tenglamani qoniqtiradi.
\frac{-\sqrt{3}i+1}{2}=\sqrt{\frac{-\sqrt{3}i+1}{2}-1}
x=\sqrt{x-1} tenglamasida x uchun \frac{-\sqrt{3}i+1}{2} ni almashtiring.
-\frac{1}{2}i\times 3^{\frac{1}{2}}+\frac{1}{2}=-\left(\frac{1}{2}-\frac{1}{2}i\times 3^{\frac{1}{2}}\right)
Qisqartirish. x=\frac{-\sqrt{3}i+1}{2} qiymati bu tenglamani qoniqtirmaydi.
x=\frac{1+\sqrt{3}i}{2}
x=\sqrt{x-1} tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}