Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}=\left(\sqrt{x-1}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x^{2}=x-1
2 daraja ko‘rsatkichini \sqrt{x-1} ga hisoblang va x-1 ni qiymatni oling.
x^{2}-x=-1
Ikkala tarafdan x ni ayirish.
x^{2}-x+1=0
1 ni ikki tarafga qo’shing.
x=\frac{-\left(-1\right)±\sqrt{1-4}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -1 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{-3}}{2}
1 ni -4 ga qo'shish.
x=\frac{-\left(-1\right)±\sqrt{3}i}{2}
-3 ning kvadrat ildizini chiqarish.
x=\frac{1±\sqrt{3}i}{2}
-1 ning teskarisi 1 ga teng.
x=\frac{1+\sqrt{3}i}{2}
x=\frac{1±\sqrt{3}i}{2} tenglamasini yeching, bunda ± musbat. 1 ni i\sqrt{3} ga qo'shish.
x=\frac{-\sqrt{3}i+1}{2}
x=\frac{1±\sqrt{3}i}{2} tenglamasini yeching, bunda ± manfiy. 1 dan i\sqrt{3} ni ayirish.
x=\frac{1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+1}{2}
Tenglama yechildi.
\frac{1+\sqrt{3}i}{2}=\sqrt{\frac{1+\sqrt{3}i}{2}-1}
x=\sqrt{x-1} tenglamasida x uchun \frac{1+\sqrt{3}i}{2} ni almashtiring.
\frac{1}{2}+\frac{1}{2}i\times 3^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}i\times 3^{\frac{1}{2}}
Qisqartirish. x=\frac{1+\sqrt{3}i}{2} tenglamani qoniqtiradi.
\frac{-\sqrt{3}i+1}{2}=\sqrt{\frac{-\sqrt{3}i+1}{2}-1}
x=\sqrt{x-1} tenglamasida x uchun \frac{-\sqrt{3}i+1}{2} ni almashtiring.
-\frac{1}{2}i\times 3^{\frac{1}{2}}+\frac{1}{2}=-\left(\frac{1}{2}-\frac{1}{2}i\times 3^{\frac{1}{2}}\right)
Qisqartirish. x=\frac{-\sqrt{3}i+1}{2} qiymati bu tenglamani qoniqtirmaydi.
x=\frac{1+\sqrt{3}i}{2}
x=\sqrt{x-1} tenglamasi noyob yechimga ega.