Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x=\frac{x^{2}-2x}{5}
5 olish uchun 2 va 3'ni qo'shing.
x=\frac{1}{5}x^{2}-\frac{2}{5}x
\frac{1}{5}x^{2}-\frac{2}{5}x natijani olish uchun x^{2}-2x ning har bir ifodasini 5 ga bo‘ling.
x-\frac{1}{5}x^{2}=-\frac{2}{5}x
Ikkala tarafdan \frac{1}{5}x^{2} ni ayirish.
x-\frac{1}{5}x^{2}+\frac{2}{5}x=0
\frac{2}{5}x ni ikki tarafga qo’shing.
\frac{7}{5}x-\frac{1}{5}x^{2}=0
\frac{7}{5}x ni olish uchun x va \frac{2}{5}x ni birlashtirish.
x\left(\frac{7}{5}-\frac{1}{5}x\right)=0
x omili.
x=0 x=7
Tenglamani yechish uchun x=0 va \frac{7-x}{5}=0 ni yeching.
x=\frac{x^{2}-2x}{5}
5 olish uchun 2 va 3'ni qo'shing.
x=\frac{1}{5}x^{2}-\frac{2}{5}x
\frac{1}{5}x^{2}-\frac{2}{5}x natijani olish uchun x^{2}-2x ning har bir ifodasini 5 ga bo‘ling.
x-\frac{1}{5}x^{2}=-\frac{2}{5}x
Ikkala tarafdan \frac{1}{5}x^{2} ni ayirish.
x-\frac{1}{5}x^{2}+\frac{2}{5}x=0
\frac{2}{5}x ni ikki tarafga qo’shing.
\frac{7}{5}x-\frac{1}{5}x^{2}=0
\frac{7}{5}x ni olish uchun x va \frac{2}{5}x ni birlashtirish.
-\frac{1}{5}x^{2}+\frac{7}{5}x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\frac{7}{5}±\sqrt{\left(\frac{7}{5}\right)^{2}}}{2\left(-\frac{1}{5}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{1}{5} ni a, \frac{7}{5} ni b va 0 ni c bilan almashtiring.
x=\frac{-\frac{7}{5}±\frac{7}{5}}{2\left(-\frac{1}{5}\right)}
\left(\frac{7}{5}\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{-\frac{7}{5}±\frac{7}{5}}{-\frac{2}{5}}
2 ni -\frac{1}{5} marotabaga ko'paytirish.
x=\frac{0}{-\frac{2}{5}}
x=\frac{-\frac{7}{5}±\frac{7}{5}}{-\frac{2}{5}} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{7}{5} ni \frac{7}{5} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=0
0 ni -\frac{2}{5} ga bo'lish 0 ga k'paytirish -\frac{2}{5} ga qaytarish.
x=-\frac{\frac{14}{5}}{-\frac{2}{5}}
x=\frac{-\frac{7}{5}±\frac{7}{5}}{-\frac{2}{5}} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{7}{5} ni -\frac{7}{5} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=7
-\frac{14}{5} ni -\frac{2}{5} ga bo'lish -\frac{14}{5} ga k'paytirish -\frac{2}{5} ga qaytarish.
x=0 x=7
Tenglama yechildi.
x=\frac{x^{2}-2x}{5}
5 olish uchun 2 va 3'ni qo'shing.
x=\frac{1}{5}x^{2}-\frac{2}{5}x
\frac{1}{5}x^{2}-\frac{2}{5}x natijani olish uchun x^{2}-2x ning har bir ifodasini 5 ga bo‘ling.
x-\frac{1}{5}x^{2}=-\frac{2}{5}x
Ikkala tarafdan \frac{1}{5}x^{2} ni ayirish.
x-\frac{1}{5}x^{2}+\frac{2}{5}x=0
\frac{2}{5}x ni ikki tarafga qo’shing.
\frac{7}{5}x-\frac{1}{5}x^{2}=0
\frac{7}{5}x ni olish uchun x va \frac{2}{5}x ni birlashtirish.
-\frac{1}{5}x^{2}+\frac{7}{5}x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-\frac{1}{5}x^{2}+\frac{7}{5}x}{-\frac{1}{5}}=\frac{0}{-\frac{1}{5}}
Ikkala tarafini -5 ga ko‘paytiring.
x^{2}+\frac{\frac{7}{5}}{-\frac{1}{5}}x=\frac{0}{-\frac{1}{5}}
-\frac{1}{5} ga bo'lish -\frac{1}{5} ga ko'paytirishni bekor qiladi.
x^{2}-7x=\frac{0}{-\frac{1}{5}}
\frac{7}{5} ni -\frac{1}{5} ga bo'lish \frac{7}{5} ga k'paytirish -\frac{1}{5} ga qaytarish.
x^{2}-7x=0
0 ni -\frac{1}{5} ga bo'lish 0 ga k'paytirish -\frac{1}{5} ga qaytarish.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=\left(-\frac{7}{2}\right)^{2}
-7 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{2} olish uchun. Keyin, -\frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-7x+\frac{49}{4}=\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{2} kvadratini chiqarish.
\left(x-\frac{7}{2}\right)^{2}=\frac{49}{4}
x^{2}-7x+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{2}=\frac{7}{2} x-\frac{7}{2}=-\frac{7}{2}
Qisqartirish.
x=7 x=0
\frac{7}{2} ni tenglamaning ikkala tarafiga qo'shish.